

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-4, 2018

5

DEVELOP THE SOFTWARE RELIABILITY USING SOFTWARE

RELIABILITY IMPROVING TECHNIQUES
Puli Nageswara Rao1, D.Jyothirmai2, Dr. K. Subba Rao3

 1Asst.Professor, SRKIT-Vijayawada-India, 2Asst.Professor, BVRIT-Narsapur-Medak,-India,
3Professor, BVRIT-Narsapur-Medak-India

ABSTRACT
In the Software Engineering, The Software
Reliability is an important facet of software
quality. Software reliability is the probability
of the failure free operation of a computer
program for a specified period of time in a
specified environment. Software Reliability is
dynamic and stochastic. It differs from the
hardware reliability in that it reflects design
perfection, rather than manufacturing
perfection. This Paper talks about the
development of Software Reliability using
improvement techniques like Process,
Software Engineering Tools and software
Engineering methods. The Paper will also
provide Software Reliability Modelling and
then provides various ways to improve
software reliability in the life cycle of software
development.
Keywords:
Software Reliability, Process, Modeling,
Software Engineering.

I.INTRODUCTION
Now a Days, computers are playing very
important role in our daily lives. Dishwashers,
TV’s, Microwave Ovens, AC’s are having their
analog and mechanical parts replaced by digital
devices, CPU’s and software’s. Increasing
competition and high development costs have
intensified the pressure to quantify software
quality and to measure and control the level of
quality delivered. There are various software
quality factors as defined by MCCall and
ISO9126 standard ,however, the software
reliability is the most important and most
measurable aspect of software quality. This paper
tries to give generalise for software reliability
and modelling is used for that. This will also
focus on using software engineering principles in

the software development and maintenance so
that reliability of software will be improved

2. RELIABILITY
The Software Reliability is defined as the
probability of the “failure free software operation
for a specified period of time in a specified
environment.” Unreliability of any product
comes due to the failures or presence of faults in
the system. As software does not wear-out” or
“age”, as a mechanical or an electronic system
does, the unreliability of software is primarily
due to bugs or design faults in the software.
Reliability is a probabilistic measure that
assumes that the occurrence of failure of software
is a random phenomenon. Randomness means
that the failure can’t be predicted accurately. The
randomness of the failure occurrence is necessary
for reliability modeling. It is suggested that
reliability modeling should be applied to system
s larger than 5000LOC.

3.RELIABILITY PROCESS

The reliability processing generic terms is a
model of the reliability-oriented aspects of
software development, operations and
maintenance. The set of life cycle activities and
artifacts, together with their attributes and
interrelationships that are related to reliability
comprise the reliability process. The artifacts of
the software life cycle include documents,
reports, manuals, plans, code configuration data
and test data. Software reliability is dynamic .In
a new or up graded product ,it begins at a low
figure with respect to its new intended usage and
ultimately reaches a figure near unity
immaturity. The exact value of product
reliability however is never precisely known at
any point in its life time.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-4, 2018

6

4. SOFTWARE RELIABILITY
IMPROVEMENT TECHNIQUES:

The Good engineering methods can largely
improve software reliability .In real situations, it
is not possible to eliminate all the bugs in the
software ;however, by applying sound software
engineering principles software reliability can be
improved to a great extent.
The application of systematic, disciplined,
quantifiable approach to the development
operation and maintenance of software will
produce economically software that is reliable
and works efficiently on real machines . The
below Figure 1.shows Software Engineering
being the layered technology focuses on the
quality and reliability of software.

Figure:1 Engineering approach to high
quality software development
 4.1 Process:
The Process defines a framework that must be
established for effective delivery of software
engineering technology. It forms the basis for
management control of software projects and
establishes the context in which technical
methods are applied, work products(models,
documents, data ,reports, forms etc)are produces,
milestones are established, quality is ensured
,and change is properly managed. The process sit
self should be assessed to ensure that I t meet s
the basic process criteria that are necessary for
successful software engineering. The possible
relationship between he software process and the
methods applied for evaluation and improvement
is shown in the Figure2.

4.2 Software Engineering Methods:
Software engineering methods provide technical
how to ”s” for building software. These methods
consist of a broad array of tasks that include
requirement analysis, design modeling, program

construction, testing and support.
Table 1:

O
m

is
si

on

In
co

rr
ec

tF
ac

t

In
co

ns
is

te
nc

y

A
m

bi
gu

ity

26% 10% 38% 26%

 Figure:2
4.2.1.Requirement Analysis:
In the early days of software development ,
emphasis was on coding and testing but
researchers have shown that requirement
analysis is the most difficult and in tractable
activity and is very error prone. In this phase
software failure ate and hence the reliability can
be increased by:

a) Properly identifying the requirements.
b) Specifying the requirements in the form

of software requirement specification
(SRS) document. The basic goal of SRS
is to describe the complete external
behavior of proposed system.

c) Requirement reviews (Validating the
SRS.)

d) Developing the prototypes.
e) Performing structured analysis for

developing conceptual models using

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-4, 2018

7

Data Flow Diagrams(DFD’s).
f) Make estimations of effort, cost and task

duration.
g) Performing the Risk management

which involve s risk management and
control.

Some projects have collected data about
requirement errors. In the effectiveness of
different methods and tools in detecting
requirement errors in specifications for a data
processing application is reported in above
Table1.On an average, a Total of more than250
errors were detected, and the percentage of
different types of errors was

4.2.2 Modelling Design:
Design activity is the first step in moving from
problem domain to solution domain. The goal of
the design is to produce the model of the system
which can be later used to build up the system. In
this phase reliability can be improved by:

a) Using“Divideandconquer”principlethati

sdividingthesystemintosmallerpieces(m
odules)sothateachpiececanbeconquered
separately

b) Abstraction of components so that
maintenance will become easy.

c) Performing different levels of factoring.
d) Controlling and understanding the inter

dependency among the modules.
e) Design Reviews to ensure that design

satisfies the requirements and is of good
quality.

f) Reducing the coupling between
modules and increasing cohesion with in
a module.

g) Developing design iteratively.

4.2.3 Program Construction
It includes coding and some testing tasks. In this
phase software reliability can be increased by:

a) Constraining algorithms by following
structured
programming[BOH00]practice.

b) Write self-documenting code.
c) Creating interfaces that are consistent

with architecture,
d) Conducting a code walkthrough.
e) Performing unit tests.

 f) Re factoring codes

4.2.4 Testing:
After the code construction of software products,

testing, verification and validation are necessary
steps. Software testing is heavily used to trigger,
locate and remove software defects. Software
testing is still in its infant stage; testing is crafted
to suit specific needs in various software
development projects in a n ad-hoc manner.
Various analysis tools such a strand analysis,
fault-tree analysis, Orthogonal Defect
classification and formal methods, etc, can also
be used to minimize the possibility of defect
occurrence after release and there fore improve
software reliability. A strategy for testing may be
viewed as shown in Figure 3.

It starts with testing the individual modules and
the n progresses by moving up ward to
integration testing where the modules are
collectively tested for errors .Invalidation testing
customer requirements are validated against the
software that has been developed. Finally in
system testing ,the entire software is tested as a
single unit. Once the above testing strategy will
be followed for software testing, software
reliability can be highly improved.

Figure:4 shows the effect of identifying and
removing errors in the early phases of software
development, on the software reliability.

 Figure:3 Testing Strategy
After deployment of the software product, field
data can be gathered and analyzed to study the
behaviour of software defects. Fault tolerance or
fault/failure forecasting techniques will be
helpful techniques and guide rules to minimize

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-4, 2018

8

fault occurrence or impact of the fault on the
system

 Figure:4

4.3 Software Engineering Tools:

Software engineering provides a collection of
tools that
helps in every step of building a product and is
termed as CASE(Computer Aided Software
Engineering)tools .Case provide s the software
engineer with the ability to automate manual
activities and analysis, design, coding and test
work. This leads to high quality and high reliable
software

5. SOFTWARE RELIABILITY
MODELING:
In the Modeling, To study a system, it is possible
to experiment with the system itself or with the
model of the system ,but experimenting with the
system itself is very expensive and risky. The
objective of many system studies, however is to
predict how a system will perform before it is
built. Consequently, system studies are generally
conducted with a model of a system. A model is
not only a substitute of a system; it is also a
simplification of the system.

A number of software reliability models have
emerged as people try to understand the attribute
s of how and why software fails, and try to
quantify software re liability. Over 200 models
have been proposed since1970s, but how to
quantify y software reliability still remain sun
solved. There is no single model that can be used
in all the situations. No mode l is complete;
one model may work well for a set of certain
software, but may be completely off track for

other kinds of problems.

Most existing analytical methods to obtain
reliability measures for software systems are
based on the Markovian models and they rely on
the assumption on exponential failure time
distribution. The Markovian models are subject
to the problem of intractably largest ate space
.Methods have been proposed to model reliability
growth of component s which cannot be
accounted for by the convention al analytical
methods but they are also facing the state space
explosion problem. A simulation model, on the
other and offers an attractive alternative to
analytic al models a sit describes a system being
characterize d in terms of its artifacts, events,
interrelationships and interactions in such a way
that one may perform experiment s on the model,
rather than on the system itself ,ideally within
distinguishable results.

6. CONCLUSION:
Now a days The Computers are playing very
important role in our day-to-day life and there is
always a need of high quality software. Software
reliability is the most measurable aspect of
software quality. Unlike hardware, software does
not age ,wear out or rust, u n reliability of
software s mainly due to bugs or design faults in
the software. Software reliability is dynamic &
stochastic. The exact value of product reliability
is never precisely known at any point in its life
time.The study of software reliability can be
categorized in to three parts: Modeling,
Measurement & improvement. Many Models
exist, but no single model can capture a necessary
amount of software characteristics. There is no
single model that is universal to all the situations
.. It can’t be directly measured, so other related
factors are measured to estimate the software
reliability. Software reliability improvement is
necessary & hard to achieve .It can be improved
by sufficient understanding of software
reliability, characteristics of software & sound
software design. Complete testing of the software
is not possible; however sufficient testing &
proper maintenance will improve software
reliability to great extent. Finally to develop the
software reliability by using software reliability
improvement techniques are very easy to
understand.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-4, 2018

9

7. REFARENCES:
1.Goel A.L. and K. Okumoto, “Time-dependent
error-detection rate model for software reliability
and other performance measures,” IEEE
Transactions on Reliability, vol. 28, no. 3, pp.
206–211, 1979.
2 Gokhale S.S., Triwedi K.S., “A Time Structure
based Software Reliability Model”, Annals of
Software Engineering, 8, 85-121, 1999.
3. Gupt R. D, Kundu D. Exponentiated
exponential family; an alternative to gamma and
Weibull. Biometrical Journal; 43: pp.117-130,
2001.
4. Huang, C. Y., Lyu, M. R. and Kuo, S. Y, A
unified scheme of some non-homogeneous
Poisson process models for software reliability
estimation, IEEE Transactions on Software
Engineering, Vol. 29, pp.261–269, 2003.
5. Huang C.Y., “Performance Analysis Of
Software Reliability Growth Models With Test
Efforts And Change-Point” Journal of Systems
and Software , 76, pp. 181-194.2005a
6. Iannino A., Musa J.D., Okumoto K.,
Littlewood B. “Criteria for Software Reliability
Model Comparisions”, IEEE Transactions on
Software Engineering, SE-10(6): pp687-691,
1984
7. Inoue S and Yamada,S “ A software reliability
growth modeling based on infinite server
queuing theory, Proceedings of the 9th ISSAT
International Confernece on Reliability and
Quality in Design, Hawaii , pp. 305-309, 2002.
8. Inoue, S. and Yamada, S. ‘Testing-coverage
dependent software reliability growth modeling’,
Int. J. Reliability, Quality and Safety
Engineering, Vol. 11, No. 4, pp.303–312., 2004.
9. Ishii, T. and Dohi, T. ‘‘Two-dimensional
software reliability models and their
application’, (PRDC) 12th Pacific Rim
International Symposium on Dependable
Computing, pp.1–8, 2006.

10. Inoue, S. and Yamada, S. ‘Two-dimensional
software reliability assessment with testing
coverage’, Second International Conference on
Secure System Integration and Reliability
Improvement. 14–17 July, .150–156,2008.
11. Inoue, S. and Yamada, S. ‘‘Two-dimensional
software reliability measurement technologies’,
Proceedings of IEEE IEEEM, pp.223–227, 2009.
12. Jiantao, P, Software Reliability. Carnegie
Mellon University (working paper) available at:
http://www.ece.cmu.edu/~koopman/des_s99/sw
_reliability/, 1999.
13. Jelinski Z and Moranda PB, “Software
Reliability Research”, Freiberger W., (Ed.)
Statistical Computer Performance Evaluation,
New York, Academic Press, pp. 465-497, 1972.
14. Kremer W. “Birth –death bug counting”
IEEE Transactions on Reliability 1983; R-32: pp
37-47.
15. Kapur. P K and Garg, “A software Reliability
growth model under imperfect debugging”,
RAIRO, 24,295-305., 1990.
16. Kapur P. K., and R.B. Garg, “Software
reliability growth model for an error-removal
phenomenon,” Software Engineering Journal,
vol. 7, no. 4, pp. 291–294, 1992.
17. Kapur P.K., and Younes S., “Software
Reliability Growth Model with Error
Dependency,” Microelectronics and Reliability,
Vol. 35, No. 2, pp. 273-278,
18. Puli Nageswararao, D.Jyothirmai,
Dr.K.Subba Rao Published a international
Journal on” Improvement in the Software
reliability by using the Software Reliability
Characteristic Model and Measures of Defect
Control ” International Journal of Engineering
Science AND Research Technology(IJESRT),
Vol: 7 Issue: 3,ISSN No: 2277-9655, Mar 2018(
UGC Approved Journal).

