

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-4, 2018

29

SQL QUERY DATABASE MANAGER TOOL FOR DEVELOPER

Abhishiktha.K1, Pradeep.RS2, Krithika.S3, Anandhamala.GS4

 UG students, Department of Computer Science and Engineering, Easwari Engineering College,
Chennai, India

 Senior Professor, Department of Computer Science and Engineering, Easwari Engineering
College, Chennai, India

Abstract
To design the database and tune SQL Queries.
Tuning can be done by reducing the total CPU
time and also reducing the I/O taken by the
Query. This tool can be used by the developer
to tune the queries and also to examine Nested
and normalized queries, and information
about database objects. The input to the
optimizer is a parsed SQL query and statistics
about the tables, indexes, and columns named
in the query. The optimizer examines parsed
and normalized queries, and information
about database objects. The input to the
optimizer is a parsed SQL query and statistics
about the tables, indexes, and columns named
in the query. The output from the optimizer is
a query plan. The query plan is compiled code
that contains the ordered steps to carry out
the query, including the access methods (table
scan or index scan, type of join to use, join
order, and so on) to access each table. Using
statistics on tables and indexes, the optimizer
predicts the cost of using alternative access
methods to resolve a particular query. It finds
the best query plan – the plan that is least
costly in terms of input.
Keywords: SQL Query, Database Manager
tool, SQL tuner, SQL (Structured Query
Language), SQL Optimization

1. Introduction:
This project is developed for designing and
maintaining SQL database. And also tuning can
be done by reducing the total CPU time and also
reducing the I/O taken by the Query. This tool
can be used by the developer to create database
and tune the queries. There is no tool that helps
the developer to create and maintain database
without the help of DBA (Database
Administrator) This SQL query manager tool

makes the easiest way to design and maintain the
database and it helps in tuning the SQL queries
by Cost based method and Execution plan
methodology. The optimizer examines parsed
and normalized queries, and information about
database objects. The input to the optimizer is a
parsed SQL query and statistics about the tables,
indexes, and columns named in the query. The
input to the optimizer is a parsed SQL query and
statistics about the tables, indexes, and columns
named in the query. The output from the
optimizer is a query plan. The query plan is
compiled code that contains the ordered steps to
carry out the query, including the access methods
(table scan or index scan, type of join to use, join
order, and so on) to access each table.

2.0 REVIEW OF LITERATURE
In paper [1], the authors M. Zagirnyak, P.
Kostenko, paper deals with factors that influence
the speed of data receiving in information
systems. The method of automatic external SQL-
query optimization is described. The method is
based on the principle of building a local model
of controlled process. It allows one to optimize
the SQL-queries regardless of applied database
management system and its settings. The
structural and functional diagram of adaptive
system of an external SQL-query optimization is
presented. Possibility of using the proposed
method under the conditions of databases
structural uncertainty was tested. Electric
network architecture.
We study the query optimization problem in
declarative crowdsourcing systems. Declarative
crowdsourcing is designed to hide the
complexities and relieve the user the burden of
dealing with the crowd. The user is only required
to submit an SQL-like query and the system
takes the responsibility of compiling the query,

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-4, 2018
30

generating the execution plan and evaluating in
the crowdsourcing marketplace. A given query
can have many alternative execution plans and
the difference in crowdsourcing cost between the
best and the worst plans may be several orders of
magnitude. Therefore, as in relational database
systems, query optimization is important to
crowdsourcing systems that provide declarative
query interfaces. In this paper, we propose
CROWDOP, a cost-based query optimization
approach for declarative crowdsourcing systems.
CROWDOP considers both cost and latency in
the query optimization objectives and generates
query plans that provide a good balance between
the cost and latency. We develop efficient
algorithms in the CROWDOP for optimizing
three types of queries: selection queries, join
queries and complex selection-join queries. We
validate our approach via extensive experiments
by simulation as well as with the real crowd on
Amazon Mechanical Turk.

In paper [2], the authors Vijayshankar Raman,
David Simmen, Guy Lohman, Hamid Pirahesh,
Miso Cilimdzic introduce Virtually every
commercial query optimizer chooses the best
plan for a query using a cost model that relies
heavily on accurate cardinality estimation.
Cardinality estimation errors can occur due to the
use of inaccurate statistics, invalid assumptions
about attribute independence, parameter
markers, and so on. Cardinality estimation errors
may cause the optimizer to choose a sub-optimal
plan. We present an approach to query
processing that is extremely robust because it is
able to detect and recover from cardinality
estimation errors. We call this approach
“progressive query optimization” (POP). POP
validates cardinality estimates against actual
values as measured during query execution. If
there is significant disagreement between
estimated and actual values, execution might be
stopped and re-optimization might occur.
Oscillation between optimization and execution
steps can occur any number of times. A re-
optimization step can exploit both the actual
cardinality and partial results, computed during a
previous execution step. Checkpoint operators
(CHECK) validate the optimizer’s cardinality
estimates against actual cardinalities. Each
CHECK has a condition that indicates the
cardinality bounds within which a plan is valid.

We compute this validity range through a novel
sensitivity analysis of query plan operators. If the
CHECK condition is violated, CHECK triggers
re-optimization. POP has been prototyped in a
leading commercial DBMS. An experimental
evaluation of POP using TPC-H queries
illustrates the robustness POP adds to query
processing, while incurring only negligible
overhead. A case-study applying POP to a real-
world database and workload shows the potential
of POP, accelerating complex OLAP queries by
almost two orders of magnitude.
In paper [3], the authors Shivnath Babu, Pedro
Bizarro state A great deal of work on adaptive
query processing has been done over the last few
years: Adaptive query processing has been used
to detect and correct optimizer errors due to
incorrect statistics or simplified cost metrics; it
has been applied to long-running continuous
queries over data streams whose characteristics
vary over time; and routing-based adaptive query
processing does away with the optimizer
altogether. Despite this large body of interrelated
work, no unifying comparison of adaptive query
processing techniques or systems has been
attempted; we tackle this problem. We identify
three families of systems (plan-based, CQ-
based, and routing based), and compare them in
detail with respect to the most important aspects
of adaptive query processing: plan quality,
statistics monitoring and re-optimization, plan
migration, and scalability. We also suggest two
new approaches to adaptive query processing
that address some of the shortcomings revealed
by our in-depth analysis: (1) Proactive-
optimization, where the optimizer chooses query
plan22s with the expectation of re-optimization;
and (2) Plan logging, where optimizer decisions
under different conditions are logged over time,
enabling plan reuse as well as analysis of
relevant statistics and benefits of adaptivity.

In paper [4] the authors M. Zagirnyak, P.
Kostenko, paper deals with factors that influence
the speed of data receiving in information
systems. The method of automatic external SQL-
query optimization is described. The method is
based on the principle of building a local model
of controlled process. It allows one to optimize
the SQL-queries regardless of applied database
management system and its settings. The
structural and functional diagram of adaptive

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-4, 2018
31

system of an external SQL-query optimization is
presented. Possibility of using the proposed
method under the conditions of databases
structural uncertainty was tested. Electric
network architecture.

In paper [5] Hyunjung Park, Jennifer Widom,
Deco is a comprehensive system for answering
declarative queries posed over stored relational
data together with data obtained on demand from
the crowd. In this paper we describe Deco’s cost
based query optimizer, building on Deco’s data
model, query language, and query execution
engine presented earlier. Deco’s objective in
query optimization is to find the best query plan
to answer a query, in terms of estimated
monetary cost. Deco’s query semantics and plan
execution strategies require several fundamental
changes to traditional query optimization. Novel
techniques incorporated into Deco’s query
optimizer include a cost model distinguishing
between “free” existing data versus paid new
data, a cardinality estimation algorithm coping
with changes to the database state during query
execution, and a plan enumeration algorithm
maximizing reuse of common sub-plans in a
setting that makes reuse challenging. We
experimentally evaluate Deco’s query optimizer,
focusing on the accuracy of cost estimation and
the efficiency of plan enumeration.

In paper [6] Optimization under uncertainty is a
challenging topic of practical importance in the
Process Systems Engineering. Since the solution
of an optimization problem generally exhibits
high sensitivity to the parameter variations, the
deterministic model which neglects the
parametric uncertainties is not suitable for
practical applications. This paper provides an
overview of the key contributions and recent
advances in the field of process optimization
under uncertainty over the past ten years and
discusses their advantages and limitations
thoroughly. The discussion is focused on three
specific research areas, namely robust
optimization, stochastic programming and
chance constrained programming, based on
which a systematic analysis of their applications,
developments and future directions are
presented. It shows that the more recent trend has
been to integrate different optimization methods
to leverage their respective superiority and

compensate for their drawbacks. Moreover, data-
driven optimization, which combines
mathematical programming methods and
machine learning algorithms, has become an
emerging and competitive tool to handle
optimization problems in the presence of
uncertainty based on massive historical data.
In paper [7] Myungcheol Lee, Miyoung Lee,
ChangSoo Kim proposed Methodological
handling of queries is a crucial requirement in
social networks connected to a graph No SQL
database that incorporates massive amounts of
data. The massive data need to be partitioned
across numerous nodes so that the queries when
executed can be retrieved from a parallel
structure. A novel storage mechanism for
effective query processing must to be established
in graph databases for minimizing time
overhead. This paper proposes a meta-heuristic
algorithm for partitioning of graph database
across nodes by placement of all related
information on same or adjacent nodes. The
graph database allocation problem is proved to
be NP-Hard. A meta-heuristic algorithm
comprising of Best Fit Decreasing with Ant
Colony Optimization is proposed for data
allocation in a distributed architecture of graph
No SQL databases. Lucene index is applied on
proposed allocation for faster query processing.
The proposed algorithm with Lucene is
evaluated based on simulation results obtained
from different heuristics available in literature.

In paper [8] Myungcheol Lee, Miyoung Lee,
ChangSoo Kim proposed In-memory databases
are gaining attention as a solution to efficiently
support SQL queries on large volume of data, as
main memories are becoming cheaper and grow
in size. However, their query performance is not
well improved on modern hardware with faster
CPUs, registers and caches due to the limitation
of the classical iterator style query processing
model. We propose a unified SQL query
optimization system using JIT compilation of
OLTP, OLAP, and Stored Procedure workloads
for enhanced performance on modern hardware.

In paper [9] MapReduce is widely acknowledged
by both industry and academia as an effective
programming model for query processing on big
data. It is crucial to design an optimizer which
finds the most efficient way to execute an SQL

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-4, 2018
32

query using MapReduce. However, existing
work in parallel query processing either falls
short of optimizing an SQL query using
MapReduce or the time complexity of the
optimizer it uses is exponential. Also, industry
solutions such as HIVE, and YSmart do not
optimize the join sequence of an SQL query and
cannot guarantee an optimal execution plan. In
this paper, we propose a scalable optimizer for
SQL queries using MapReduce, named SOSQL.
Experiments performed on Google Cloud
Platform confirmed the scalability and efficiency
of SOSQL over existing work.
In paper [10] Jayant Rajurkar proposed
In today's complex world requires state-of-the-
art data analysis over massive data sets. In data
warehousing and OLAP applications, scalar-
level predicates of set in SQL become highly
inadequate which needs to support set-level
comparison semantics, i.e., comparing a group of
tuples with set of values. Complex queries
composed by scalar-level operations are
challenging for database engine to optimize,

which results in costly evaluation. Bitmap
indexing provides an important database
capability to accelerate queries. Few database
systems have implemented these indexes
because of the difficulties of modifying
fundamental assumptions in the low-level design
of a database system. Bitmap index built one
bitmap vector for each attribute value is gaining
popularity in both column-oriented and row-
oriented databases. It requires less space than the
raw data provides opportunities for more
efficient query processing. In this paper, we
studied the property of bitmap index and
developed a very effective bitmap pruning
strategy for processing queries. Such index-
pruning-based approach eliminates the need of
scanning and processing the entire data set and
thus speeds up the query processing
significantly. Our approach is much more
efficient than existing algorithms commonly
used in row-oriented and column oriented
databases.

Tabulation:
S.NO Paper Technique Result Issues
1 Crowd-Op:

Query
Optimization
for Declarative
Crowdsourcing
Systems

Complex
query
optimizatio
n
Real Crowd
Evaluation

A cost-based query
optimization that
considers the cost-
latency trade-off and
supports multiple
Crowdsourcing
operators. The
experiments on both
simulated and real
crowd.
Demonstrate the
effectiveness of
query optimizer and
validates the cost
model and latency
model.

Privacy issues in relation with
crowdsourcing occurs. It has
no access or relation with
database.

2 Robust Query
Processing
through
Progressive
Optimization

Progressive
Query
Optimizatio
n

Progressive
Optimization (POP)
provides a flexible
mechanism to build
QEPs that are robust
to optimizer
misestimated, by
inserting CHECK

Outdated statistics or invalid
assumptions may cause
significant estimation errors in
the cardinality, and hence the
cost of a plan, causing sub-
optimal plans to be chosen.
One proposed solution is to
continually re-optimize by

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-4, 2018
33

operators into a
traditional QEP to
test at execution time
criteria under which
the remainder of a
QEP is still optimal.

using progressive query
optimization.

3 Adaptive
Query
Processing in
the Looking
Glass

Proactive
re-
optimizatio
n
Plan
logging

Identification of
three families of
AQP systems (plan-
based, CQ-based,
and routing-based),
and the detailed
comparison of these
system families with
respect to the most
important aspects of
AQP: plan quality,
statistics monitoring
and re-optimization,
plan migration, and
scalability.

It does not provide any update
or access to the database.
Greedy optimization may not
find best plan in routing based
method.

4 External
optimization of
SQL-query
under
conditions of
databases
structural
uncertainty

Implementa
tion of the
local model
of
controlled
process
(LMCP)
concept

Advantages of
application of the
external SQL queries
optimization based
on construction of a
local model of
controlled process
allow one to confirm
the correctness and
rationality of using
this approach.

External optimization of data
selection SQL-queries before
their execution by DBMS.
External optimizer is installed
on the server side in client-
server architecture, it monitors
queries from client to server.

5 Query
Optimization
over Crowd-
sourced Data

Distinguishi
ng between
existing vs.
new data
Estimating
cardinality
and
database
state
simultaneou
sly
Exploiting
limited sub-
plan reuse
opportunitie
s.

The project includes
Deco’s query
optimizer that finds
the best plan to
answer a query in
terms of estimated
monetary cost.
Several novel
techniques into the
query optimizer to
reflect Deco’s query
semantics and plan
execution strategies
are incorporated.

An improvement for a more
efficient cost effective
estimation is needed. It does
not include in any maintenance
or accessing of the database.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-4, 2018
34

6 Process
Optimization
with
Consideration
of
Uncertainties-
An Overview

OPTIMIZA
TION
uncertaintie
s

Optimization with
consideration of
successful
uncertainties

In case external optimizer ,
separate memory required

7 Data allocation
optimization
for query
processing in
graph
databases
using Lucene

Ant Colony
Optimizatio
n
Lucene
index

The main goal of
this work is to obtain
optimal allocation of
data considering
replication and
relation with less
number of nodes
such that the total
allocation space for
blocks of data does
not exceed the node
capacity. It will
result in less
overhead and
efficient query
retrieval process.
Ant Colony
Optimization
integrated with BFD
is used for selecting
the nodes that satisfy
this objective.
Lucene index is
applied to index the
data residing in each
node.

There is a processing delay
present. It does not provide any
authorization of the database
nor any access to it.

8 A JIT
Compilation-
based Unified
SQL Query
Optimization
System

JIT
Compilation
System

SQL queries into
machine independent
IR at the query plan
level or operator
level, and then
applies various
semantic/syntactic
optimizations and
macro/micro
optimizations to the
transformed IR. The
optimized IR is then
JIT compiled into
best machine code
considering runtime
status of
heterogeneous

The compile time is small and
compilation are less explored
for utilizing highly parallel
accelerators.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-4, 2018
35

runtime
environments.

9 Scalable Query
Optimization
for Efficient
Data
Processing
using
MapReduce

Query
Optimizatio
n
MapReduce

Using MapReduce a
scalable optimizer is
being created for the
SQL queries and on
which when
experiments are
performed on
Google Cloud
Platform confirmed
the scalability and
efficiency of SOSQL
over existing work.

Existing work in parallel query
processing either falls short of
optimizing an SQL query using
MapReduce or the time
complexity of the optimizer it
uses is exponential. Also,
industry solutions such as
HIVE, and YSmart do not
optimize the join sequence of an
SQL query and cannot
guarantee an optimal execution
plan.

10 Efficient
Query
Processing and
Optimization
in SQL using
Compressed
Bitmap
Indexing for
Set Predicts

Bitmap
Indexing

Scalar-level
predicates of set in
SQL become highly
inadequate which
needs to support set-
level comparison
semantics and
Complex queries
composed by scalar-
level operations are
challenging for
database engine to
optimize, which
results in costly
evaluation

By studying the Bitmap index
a very effective bitmap pruning
strategy for processing queries
is being developed.

3. Conclusion and Future Work:
We could incorporate this Sql Query Database
manager tool with other present query
optimization techniques to make it a much more
successful technology to use.
This project was developed to understand how
the SQL Server Optimizer optimizes the queries
and reduces the query’s CPU time and
Input\Output required.
So there are many things for future
enhancements of this project. The future
enhancements that are possible in the project are
as follows:

 To optimize more complex queries i.e.
queries which include Joins, Unions,
Sub Queries etc.

 To study the database structure and
provide the user with suggestions to
improve the database structure for best
performance.

To optimize the query which is been embedded
in the Application, without the efforts of the
user or programmer entering the query in the
SQL Tuner.
References:
[1] De Capua C, Fulco G, R.Morello (2017),
“External optimization of SQL-query under
conditions of databases structural
uncertainty”, IEEE Journal, Volume - 17, Issue
-23, Pages: 7828 – 7837, 2017.
[2] A.R. Al-Ali, M. Alikarar, R. Gupta, M.
Rashid, I. A. Zualkernan, "Privacy-Preserving
Query Processing by Multi-Party
Computation,” IEEE Transactions on Sql
query, Volume - 63, No - 4, pp. 426-434,
November 2017.
[3] M. Albu, M. Sănduleac, C. Stănescu , "
Optimisation of Language-Integrated Queries
by Query Unnesting," IEEE Transactions ,
Volume - 8, No - 1, pp. 485-492, January 2017.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-4, 2018
36

[4] Michael Stonebraker, Sam Madden, Pradeep
Dubey The Optimization for Recurring
Queries in Big Data Analysis System with
MapReduce and execution plan, SIGMOD
Record 42(1) (2013) 44-49.
[5] S.L. Ho, S. Yang, A fast robust
optimization methodology based on
polynomial chaos and evolutionary algorithm
for inverse problems, IEEE Trans. Magn. 48
(2012) 259–262.
[6] Process Optimization with Consideration
of Uncertainties-An Overview IEEE Journal,
Volume – 4, No - 5, pp. 1563-1570, Oct. 2017.
[7] Kaiping Xue, Senior Member, IEEE,
Shaohua Li, Jianan Hong, " Two-Cloud Secure
Database for Numeric-Related SQL Range
Queries with Privacy Preserving," IEEE
Sensors Journal, Volume - 16, No - . 5, pp. 1361-
1367, March1, 2016.
[8] S. Dong, S. Duan, G. Li , R. Tao Q. Yang,
and J. Zhang, " Quality-Based SQL:
Specifying Information Quality in Relational
Database Queries," IEEE Internet of Things
Journal, Volume - 4, No - 5, pp. 1296-1303, Oct.
2017.
[9] L. Lampe, Y. Sun and V. W. S. Wong, " A
Query-Driven Approach to Entity
Resolution," IEEE Journal, vol. 5, no. 1, pp. 69-
78, Feb. 2018.
[10] Daniel R. Harris, Darren W. Henderson,"
Using Common Table Expressions to Build a
Scalable Boolean Query Generator for
Clinical Data Warehouses," IEEE
Transactions, vol. 66, no. 8, pp. 2056-2064,
Aug. 201

