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Abstract positive  definite (respectively negative
This paper is concerned with the reliable H,, definite). I and 0 represent identity matrix
for a class of uncertain neutral system with and zero matrix with compatible dimension. *
time- varying delays. A new Lyapunov denotes the symmetric elements of the
functional is constructed to obtain sufficient symmetric matrix.

conditions under which the uncertain neutral

system is (6) with disturbance attenuation I. INTRODUCTION
level y > 0 for all admissible uncertainties. = During the past few decades, much attention has
More precisely, Schur complement and been paid to the research on the problem of time
Jenson integral inequality is are utilized to delay, which frequently occurs in various
substantially simplify the derivation of the practical engineering systems, such as T-S fuzzy
main result. Finally, a numerical example system, switched linear system, Markovian jump
with simulation result is provided to show the system and networked control system. The

effectiveness of the obtained result. existence of time delay would deteriorate the
Index Terms: Reliable H , control, uncertain performance of system or even be the important
neutral system, parameter uncertainties. source of instability of systems with time-

Notations: Throughout  this paper, varying delay is frequently has attracted
Superscripts "T" and "(—1)" stand for matrix remarkable attention of researchers, see for
transposition and matrix inverse respectively. instance in. The stability analysis criteria for
R" denotes the n-dimensional FEuclidean time-delay systems can be classified into two
space. Z_. denotes the set of positive integers. types: delay-independent ones and delay-
R™*" denotes the set of all nxn real matrices. dependent ones.
P > 0 (respectively P < 0) means that P is

II. PROBLEM FORMULATION AND PRELIMINARIES
Consider an uncertain neutral system with time varying delays in the following form
{J'c(t) — Cx(t — (1)) = Ax(0) + Agx(t — h(©)) + Bus(t) + w(t) )
y(t) = D x(t) + Dg x(t — h(1)), S
where x(t) € R™is the state vector. A = A + AA(t), A4 = Az + AA4(t), C = C + AC(t), where
A, Ay C,D € R and B € R"™X™ are known real constant matrices with appropriate dimensions.
7(t) and h(t) are time-varying delays satisfying
0<T1, <17(t) <1,,0< hy <h(t) < hy,1,(t) = py and A(t) = p,, (2)
where 7, , T,, hq, hy, pand p, are positive constants. The parameter uncertainties
AA(t),AA,(t) and AC(t) are time-varying matrices with appropriate dimensions and are assumed
to be norm bounded and are defined as
[AC(t) AA() AA4(D)] = M F(t) [Ny Ny N3], (3)
where M, N, , N, ,and N5 are known constant real matrices with appropriate dimensions. F(t) is
the uncertain matrix functions which satisfies

FT()F(t) < I 4)
The control input can be described as
us(t) = Hu(t) = H K x(t), (5)
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where K is the feedback gain matrix and H is fault matrix.
Finally, by combining (1) and (5) we obtain the closed-loop uncertain neural system with time
varying delays in the following form

{x(t) —Ci(t —(®)) = Ax(t) + Agx(t — h(t)) + BH K x(t) + w(t) ¢

y(t) = D x(t) + Dg x(t — h(¢)), ©

Definition 2.1: [27] System (6) is said to be robustly stable with disturbance attenuation y if for all
w(t) € L,[0, o], the response z(t) under zero initial conditions satisfies
J, 2T () z(O)dt < y? [ W (6) w(®)dt .
Lemma 2.2: [20] Let D, E and F (k) be the real matrices of appropriate dimensions with F (k)
satisfying FT (k) F (k) < I. Then we have the following inequality holds:
fore >0,DF(k)E+ETFT(k) DT < e *DDT + €ETE.
Lemma 2.3: [20] Given constant matrices Z;, Z, and Z3 appropriate dimensions, where Z; =

= =T
Bl >0andZ, =27 > 0thenE, + ET 551 55 < Oifandonlyif[": -3 ] <0.
_E,

Lemma 24: [12] For any constant matrices M > 0, any scalars a and b with a < b, and a vector
function x(t): [a, b] -» R™ such that the integrals concerned are all defined, then the following
holds:

b

b T b
[f x(s)ds| M fx(s) ds| < (b— a)fxT(s) M x(s)ds

a

II1. MAIN RESULTS
The main aim of this section is to obtain the conditions for the existence of a stabilizing
state feedback reliable H,, control law such that the resulting closed-loop system is robustly stable
with given disturbance attenuation level y > 0. In order to discuss robust stability of (6) which has
parameter uncertainties, first we consider the case in which the matrices are fixed, i.e., when
AC(t) = 0, AA(t) = 0and AA,(t) = 0. For this, we consider the nominal form of system as
follows:

{a‘c(t) —Cx(t—1(®) =Ax(@®) + Ag x(t — h(8)) + Bus(8) + w(2) o

y(t) =D x(t) + Dy x(t — h(D)),

Theorem 3.1: For given positive scalars 74, T, hq, hy, 4y and p, and the known actuator fault
matrix H there exists a reliable controller (5) such that the nominal neutral system (7) satisfies H,
performance index vy if there exists symmetric matrices P > 0,Q; > 0,i = 1,2,...,9,R; >
0,S; > 0,i = 1,2,3,4 with appropriate dimensions and any matrices X and Y such that the
following matrix inequality holds: [ﬁ17x17] < 0, where
ﬁl,l = Ol + Qz + 04 + 05 - 25A1 - 25A3 + hlﬁl + T1§3 - 2X,ﬁ1’8 - p +AX + BHY,

2 . 2 5 o ~ ~ A~ 2 .
112 =751, M 1a = =53, Q5 = Q3 — Q1 + (hy — hy) Ry — 255,013 = 7——— 52,

hy 71 hy —hy
—~ PP ~ ~ A o~ 2 A o~ A~ o~ ~
Q33 =—=0304 = Q¢ — Qs =254 Qy15 = ;54»95,5 = =06 Q66 = —(1 — p1)Qy,

71
2

~ ~ ~ o~ A h2 . 2. . _
Q6,8 = 4Aq X'Q7,7 =-(1- #2)Q5'98,8Q7 + =5 +-553+ Qs+ Qg — 2X, Q8,9 = CX,

=)

2 2
2 2
ﬁ8,16 = X, ﬁ9,9 =—-(1- #2)07;610,10 = MSz - 08» ﬁ11,11 = %& - 09;
Dy = — o8y = Ry By = — o8y Ry B4y = — 85— —R
) n2 1 hy 1,5413,13 (hy — hy)? 2 (hy — hy) 2,3414,14 2 3 o 3
~ 2 1. _ 2 . 1 A~ o= _ r
Dy414 = —¥53 - T_1R3:Q15,15 =- (1, — 7,)2 Sy — (1, — 71) Ry Q616 = =V Q107 = XD7,

Q617 = XDE, 04717 = =1, where P =WPW1,Q; =W~ Q;Wwi=123..9
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Ri=WR, W18 =w"ts;W,i=1234.
Proof: Let us define the Lyapunov — Krasovskii function for the system (7)
4

V(x®) = ) Vu(x(®), ®)

where

Vi(x(®)) = xT(£)P x(b),

t t t—hy

Va(x(t)) = f xT(0) Q; x(0)d6 + f xT(0) Q, x(8)d6 + f xT(6) Q3 x(8)d6

t—hy t—h(t) t—hy

t t—74

t
+ f xT(8) Q4 x(0)dO + f xT(8) Qs x(8)do + f xT(8) Qg x(8)dO

t—174 t—1(t) t—1,
t t

t
+ fxT(e)Q7x(9)d9+ fxT(e)ng(e)d9+ fxT(e)ng(e)de
~h

t—T(t) t 1 t—7q

Vs(x(®)) = ff xT(8) R, x(6)d6 du + f f xT(8) R, x(8)d6 du

thlu thzu
tTlt

J.J. xT(0) R; x(0)dO du + f f xT(8) Ry x(0)dO du

tTlu t—7,
t— hlt hqy t—hq

v (x(®) = fff x7(6) S; %(6)d6 dA du + f f f x7(6) S, x(6)d6 dA du

thlul thzu

t—Tl t—Tl t_Tl

t t t
+ IIJQ&T(G)S3X(9)d9d)ldu+ f f J #7(0) S, £(6)d dA du

t—71 t—7, U

Calculating the derivatives V(x(t)) along the trajectories of the system (7), we have
Vl(x(t))
=2xT(t) P x(¢), 9
V, (x(t)) = xT(O[Q + Q2 + Q4 + Qs]x(t) + x(t — h)[Q3 — Q1]x(t — hy)
+xT(t = h)[-Q3]x(t — hy) + x7(t — 71)[Q¢ — Qulx(t — 77)
+x7(t = 1) [=Qelx(t — 72) + x"(t = h(©))[—(1 — uy)Q21x(t — h(®))
+x"(t = 7()[-(1 = p)Qs1x(t — 7(®)) + 2" (DQ7 + Qs + Qo]x(t)
+ XT(t - T(t))[_(l - Mz)Q7]5f(t - T(t)) + x7(t — h)[-Qglx(t — hy)
+ 27 (t — 1) [~ Qo] % (¢
-7 (10)
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t

Va(x(£)) = hyxT(t) Ry x(t) — f xT(s) Ry x(s)ds + (hy — hy) xT(t — hy) R, x(t — h))

t=n,
t—hy t

- f xT(s) R, x(s)ds + t,;xT(t) Ry x(t) — f xT(s) R; x(s)ds
—hy -Tq

+ t(Tz —1)x"(t = T)Rx(t — T1) t
t=1,

- f xT(s) Ry x(s)ds (11)
t-1,

Vo(x(8)) = —xT(t) S, x(t) — f f xT(0) S; x(8)d6 dA + (hz—hl)zch(t — hy)S,%(t — hy)
t—hq A

— T (0) 5, %(8)d6 d2 + AT (6) Sy k() — [, [FiT(6) Sy £(6)d6 dA+

TG (1) Sk — 1) — ) “f T(0) S, %(0)d6 dA (12)

By applying Jenson inequality Lemma 2.4 for the 1ntegra1 terms in (11), (12) and the time delay

interval, the integration in the above equations can be written as
t

— | xT(s) Ry x(s)ds

t= h.
t
fx(s)ds‘ Rll fx(s)ds (13)
t=h t=h
t— h1
- xT(s) R, x(s)ds
t- hz
< _hzihl f x(s)ds] R, l f x(s)ds (14)
t—h, t—hy
t
- f xT(s) R; x(s)ds
o . t t
< —a[t[ x(s)ds|R3 [t[ x(s)ds (15)
—
- f xT(s) Ry x(s)ds
o t— T1 t—74
g x(s)ds R4l f x(s)ds (16)
t- ‘rz t-1,
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f f #7(0) S, #(8)d6 dA

t—hy 2
i Lll | ! x(0)do d/l] S, L l ) f %(0)d6 dl‘ 17)
t—hq t—hy
tL f #7(0) S, £(0)d6 dA

t—hq t—hy

=" h)Zlf j
f f £T(0) S, %(0)d6 dA

t—74 4
-z l f fx(e)de d}L] Ss l f fx(e)de dA] (19)

tTl tTl

t—hy t—hy
x(0)do d;t‘ S, l f f x(0)do d/ll (18)
t—h,

t—7T1 ¢t

f f #7(0) S, %(8)d6 dA

tTZ
tTl

t—71 ¢ ¢
e —r1)2 L J Af x(6)do d/l] S, lt x(6)d6 d}L] (20)

2 -T2 A

At the same time, for any appropriate dimensional non-singular matrix W and a scalar y > 0, we
have 2 xT() W [C (t — 7(6)) + A x(t) + Ay x(¢t — h(t)) + BHK x(t) + w(t) — x(t)] = 0
It follows from (9) — (20) that

Vix@®) <2x"@) Px(t) + xT(O[Q + Q2 + Q4 + Qs1x(8) + xT(t — hy)[Q3 — Q41x(t — hy)
+ xT(t — hy)[—Qs]x(t — hy) + xT(t — t)[Qs — Qulx(t — 71)
+xT(t = 1) [-Q6lx(t — 75) + xT(t - h(t))[_(l - ﬂl)Qz]x(t - h(t))
+xT(t =) [—(1 — ) Qslx(t — 7(8)) + xT(O)[Q7 + Qg + Qolx(t)
+xT(t— 1)) -1 — ) Q1% (t — (1)) + x7(t — hy)[—Qglx(t — hy)
+ &7 (t — 1) [=Qo]x(t — 71) + hyx"(t) Ry x(t)
+ (h, — hy) xT(t — hy) Ry x(t — h) + 1,xT(t) R3 x(t)

2
+ (t; —1)xT(t — 1))Rx(t — 71) + hz—lch(t) S, x(t)

h _ h 2 2
+ %xm — h))S,(t —hy) + %XT(t) S5 #(0)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-7, 2018
95



INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

t T t
— 2 1
%ﬂ(t—n)ma—m—h— f x(s)ds | R, f x(s)ds
! | t—h ] t—h
1 -t 1 W I B
— x(s)ds] R, [ f x(s)ds - fx(s)ds R fx(s)ds
2 ! t hz t— hz 1 t t T1
[ t— ‘L'1 t—-74
1 2
— x(s)ds| R, x(s)ds| —— x(G)dH dil S x(6)d9 dA
T, — T h?
2 1 | £— ‘L'Z t—7, t—hq A t—h; 4
t— hlt hl t— hlt hl
2
2
_l [ fx(g)dg als,| | fxw)dg o
L t— T1 t— Tl
t-T1 ¢t t—-71 ¢
_m f fx(@)d@ di S4l f fx(H)dH da (21)
t-1, -1,
To discuss the H,, performance of system (7), we introduce the following relation:
- [ @@
0
—y2 0T (Ow(t)] dt (22)

It follows from (21) using Definition 2.1 and Lemma 2.2, by the zero initial condition, we have
V(0) = 0 and V(o) > 0, and we have

/nsfb%wyayﬂﬂw%wwayudﬂwndt
0

< [ ¢r@ s de (23)
0
where,
T@) =[xT@®) xT(t—h) xT(t—hy) xT@t-7) xT(t-1) x"(t—h(@®)
xT(t—1@) *7() xT(t —7(0)) xT(t—-h) AT(t—7y)

t t— h1 t—Tl

fxT(s)ds f xT(s)ds fxT(s)ds fxT(s)ds f xT(s)ds w'(t)]

t—h[ t—hz t—Tl t_Tl t—TZ
and Iy = [Qy7447] <O
Where, 91’1 = Q1 + QZ + Q4_ + Q5 - 251 - 253 + h1R1 + T1R3 - ZX, ‘0‘1,8 =P + AX + BHY,

2 2 2
W12 = h_Sl' Q14 = ;1 S3, Q2 =03 —0Q1 + (hy — h)R; — 25,, Q313 = h, — h, S2
1

2
Q33 =—0Q3, Qg4 = Q6 — Qs — 254 Q15 = ﬁszp Q55 = —0Q6 Qo6 = —(1—111)0Qs,
2~ T

h? T2
Q6,8 = A4X, Q7,7 =-(1- .Uz)Qs: QB,S =Q7;+ Qg+ Qg —2X + ?15' + ?153: Q89 = CX,
(hz—h)z (TZ—T)
Q8,16 =X, Q9,9 =-(1- .Uz)Q7 , Q10,10 = Tl — Qs, -Q11 11 = Tl - Q9,
2 1 2 1 2 1
D212 = _h_fS hy Ry, Q313 = _m‘g h, — hy T Ra, Qi414 = _ESS - T—!R3'
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2 1
(12 — 11)? ' T2 —
To complete the proof , pre and post multiplying (19) by diag{W =%, ..., W=1,1} and by letting
P=wPpw 10, =W QW Li=12,...9R, =W R, W L5, =W-Is;W1i=1234
The following matrix holds:
[Ql7x17] <0

Q515 = — R4; Q4515 = VZ' Q17 = XDT, Qgq17 = XDg; Q4717 = —L

where,
ﬁl,l=@1+QZ+Q4+QS_2§1_2§3+h1§1+T1§3_2X' ﬁ1,8=p+AX+BHY,
~ 2 . ~ 2 . ~ ~ ~ ~ P 2 A
Q1,12 = h_Sl' 91,14 =—2393, -Qz,z =03 -0, + (hz - h1) R, — 285, Q2,13 = msz'
1 T 5 2 1
’Q3,3 == @3’ ﬁ4,4 = Qe - 04 - 2§4' ﬁ4,15 = T, — ~§4’ ﬁs,s = —Qe; ﬁe,e =-(1- #1)@2'
~ J— ~ PPN ~ h2 ~ —
Q6,8 = Aq4 X:Q7,7 =-(1- .Uz)Qs:Qs,s =0Q;+ 151 + 53 + Qs + Q9 2X, Q8,9 = CX,
PN PN PPN (hy — h1)2 (1, —11)? 4 ~
Q8,16 = X, Q9,9 =-( —#2)Q7'Q10,10 = TSZ - QS'Qll,ll = TS4 — o,
Dipiy = — 28, ——R,0 s L R 0= —28—2R
12,12 h% hl 1,%413, 13 = ( g — hl)z 2 (hz _ h]_) 27%414,14 le 3 Tl 3
0 28— 1 R,0 s -—' g0 20,1, = XD
= - - ) = - - ] = V ) - )
14,14 T12 3 ) 3341515 (1, — 7,)? 4 (1, — 11) 4,%416,16 1,17

‘6'6,17 = XDg, ﬁ17,17 =—I

Theorem 3.2: For given positive scalars 74, T, by, hy, 1 and p, and the known actuator fault
matrix H and M, N;, N, and N5 are known constant real matrices with appropriate dimensions there
exists a reliable controller (5) such that the nominal neutral system (7) satisfies H,, performance
index vy if there exists symmetric matrices P > 0,Q; > 0,i = 1,2,...,9,R; > 0,5; > 0,i =
1,2, 3, 4 with appropriate dimensions and any matrices X and Y such that the following matrix
inequality holds:

_ [erm]17x17 &, o,

V= * —el 0 | <0

* *x  —el

where O; = [N;X 04, NyX 05, N3XI7,Q, = [eMT 0,, eMT 0,, eMT]”
In this case, state feedback control gain in (5) is given by K = Y X~ and the other parameters are
defined as in Theorem 3.1.

Proof: The proof of this theorem is immediately follows from Theorem 3.1 by replacing the
matrices A, A4z and C with A + M A(t) N;, Az + M A(t) N, and C + M A(t) N5 respectively.
Further, by applying Lemma 2.1 and Lemma 2.3 we can obtain (23). This implies that the H,
performance can be ensured if the matrix inequality in Theorem 3.2 hold. The proof is completed.

IV. NUMERICAL SIMULATION
In this section, we provide a simulation example to illustrate the effectiveness and
applicability of the proposed method.

Consider an uncertain neutral system with time - varying delays with the following matrices
1 0 [—0.55 0.02 —0.1]

A= [:3 —2]"4‘1 ~ l-025 -o. 3] ¢= [
B = [1(')4],17 =[0.05 0],Dy= [0.1 0],H=03
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The uncertain parameters are given as follows

_10.01 0 _[0.01 O _[0.01 0O _10.01 0
M_[o 0]'N1_[0 O’Nz_[O 0]'3_[0 0]
The disturbance attenuation level is specified to be y = 0.9 and we take h; = 1.3, h, = 2.6, 7, =

1.2, 7, =29, u; = 0.4, p, = —0.5. Then by solving the matrix inequality in Theorem 3.2 using
Matlab LMI toolbox, the gain matrix of the state feed back H,, controller can be obtained as
K =[-7.9727 —3.7966]

—

n2p *H

Stale Responses

=0.1 1 1 1 L i 1 1 1 Il
0 10 20 30 40 50 60 70 20 e0 100
Time t

Fig. 1: H,, performance of closed-loop system.

Contral Responses

" L " " " " L " "
1] 10 20 30 40 50 1] 70 80 ©0 100
Timet'

Fig. 2: control response of uncertain system

x 107

T T T T T T T T T

X

Outputl Responses
(=]

-8 A N . A A A N A
1] 10 20 30 40 50 60 70 80 Q0 100
Time 't

Fig. 3: output response of uncertain system.

Simulation results for state response of neutral 1. Further, the corresponding controller
system (6) for H,, performance is shown in Fig performance is shown in Fig 2. From the
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simulation results, it is easy to see that the
obtained controller design is suitable to make
sure the state trajectories are converging well.

V. CONCLUSION

The problems of stability and dissipative
analysis of NCCS have been investigated. In this
paper for a time varying random delay technique,
some novel Lyapunov-Krasovskii functional
candidates were introduced for admissibility and
dissipative of NCCS. The derived results are
tabulated. At the end, numerical examples were
given to demonstrate the modeling and guarantee
the effectiveness of the developed approaches.
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