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A B S T R A C T 
In this review, we outline recent progress 
towards the use of Extended Irreversible 
Thermodynamics to describe polymer 
solutions and blends under shear flow. The 
basic idea is that, EIT is particularly well 
suited to describe process characterized by 
situations where the product of relaxation time 
and the rate of variation of the fluxes is 
important, or when the mean free path 
multiplied by the gradient of the fluxes is high; 
these situations may be found when either the 
relaxation times or the mean free paths are 
long, or when the rates of change in time and 
space are high. 
EIT has proved to be of use in obtaining the 
relevant constitutive equations as the polymer 
solutions exhibit rather long relaxation times 
for the viscous pressure tensor.and, in that 
respect, it confirms in several cases the 
equations provided by other approaches. 
Keywords: Extended Irreversible 
Thermodynamics,  relaxation time, 
constitutive equations 
 
1. Introduction 
Extended irreversible thermodynamics (EIT), 
together with classical irreversible 
thermodynamics (CIT) and rational 
thermodynamics (RT) has been among the 
mainstream of research in non-equilibrium 
thermodynamics. EIT crosses the borders of the 
local-equilibrium hypothesis and explores new 
grounds. Since the early 1960s, several hundred 
papers have been published on EIT. Recently, 
two books (Jou et al 1993b, 1996a, Muller and 
Ruggeri 1993)1,2 have appeared wherein a 

systematic analysis of EIT can be found. Other 
books closely related to EIT but with different 
aims and scopes have also been written by 
Sieniutycz and Salomon (1992)3, Eu (1992)4,5, 
Tzou (1997)6, Wilmanski (1998)7. In 1998, two 
review articles ( Jou et al 1988a, Garcia-Colin 
1988)1,8,9 opened a wider perspective on EIT. 
Because of the intense activity developed since 
the publication of first review, D. Jou, Casas –
Vazquez and G. Lebon1  updated the vision and 
provide an overview of the progress with the 
basic ideas underlying the theory and its wide 
range of applications achieved during the last 
decade  
The study of high frequency, short-wavelength 
phenomena and (or) large amplitude 
perturbations has known an extraordinary 
impetus due to the progress in material science 
and technology in general. During the 1960s, 
experiments on light and neutron scattering 
opened new perspectives and contributed to the 
developments of the so-called generalized 
hydrodynamics, where the usual transport laws 
are generalized to include memory and non-local 
effects. In the last two decades, the increasing 
miniaturization of physical devices (mainly in 
microelectronics) has directed attention to a 
regime where transport is no longer dominated by 
collisions amongst the particles, but rather by 
ballistic effects. All these features have motivated 
the formulation of a mesoscopic description, 
intermediate between the macroscopic and the 
microscopic ones. The main idea behind a 
statistical formalism is to eliminate the excess of 
information resulting from a purely microscopic 
description. An alternative, complementary 
attitude consists of starting from a macroscopic 
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description and adding relevant information to 
take into account peculiar features of the 
mesoscopic regime. The aim of EIT is precisely 
the latter one, i.e, to propose an extension of 
classical thermodynamics towards mesoscopic 
regimes. Obviously, the relevance of the theory 
should be checked by comparing it with 
experiment and the results derived from 
microscopic models. 
By EIT are understood the thermodynamic 
theories which used as independent variables the 
dissipative fluxes in addition to the classical 
variables such as internal energy, density, mass 
concentrations, deformation tensor etc. In the first 
versions of EIT, the extra variables were selected 
to be the usual thermo-hydrodynamic fluxes as 
the heat flux, the viscous pressure tensor, the 
electric flux, and the diffusion flux. Later, higher-
order fluxes, such as the flux of the heat flux, 
were included. Other keystones in the 
construction of EIT are the formulation of 
evolution equations for the fluxes and the 
establishment of a generalized Gibbs equation 
expressing the dependence of the non-equilibrium 
entropy with respect to the basic variables. These 
lines of thought define a general framework, in 
which coexist several different methods of 
approach, with either physical or mathematical 
emphasis and have fostered efforts towards a 
unified view. Many problems remains open in 
non-equilibrium thermodynamics in general and 
in EIT in particular. It is, however, expected that 

the combination of an EIT approach and 
microscopic theories will emerge into a suitable 
framework for the description of mesoscopic 
phenomena10 out of equilibrium. 
 
1.1General Structure of EIT 
In its original formulation. EIT included the usual 
dissipative fluxes-heat flux, diffusion flux, 
electric flux, viscous pressure-among the set of 
independent variables. The main motivation was 
the need to describe phenomena with timescales 
comparable to the relaxation times of these 
fluxes. Such situations are met when the 
phenomena are very fast or very steep (as 
ultrasound propagation, light scattering in gases, 
neutron scattering in liquids, heat propagation at 
low temperature, shock waves etc) or when the 
relaxation times of the fluxes become very long, 
as in polymeric solutions, suspensions, super 
fluids or superconductors.  
 
1.2. Generalized Entropy in a One-Component 
Fluid 
As in CIT, EIT assigns a central role to entropy. 
It is assumed that the entropy of a one-component 
fluid depends locally not only the classical 
conserved variables, such as internal energy u , 
specific volume v . but also on the fluxes, namely 
q  (heat flux), vp  (bulk viscous pressure) and 

0
vp   

(deviatoric part of the viscous pressure tensor).

 
 
In differential form, the entropy can be written as 

 

00

0 1 2
1 1 1 1 1. :v vds du vdv dp dq dπ α α α
θ θ θ θ θ

= + − − − Pv v v
 (1.1) 

where all the extensive quantities s, u, v are measured per unit mass. 
A general expression of the entropy flux J for isotropic systems is, up to second order in the fluxes,  

 
0

1 ' "s v vp Pθ β β−= + + ⋅J q q q  (1.2) 
 
where the coefficients β  and β are functions of 
u and v. In the linear approximation in the fluxes, 
the second and third terms in the right-hand side 
are negligible and θ can be identified with the 
local-equilibrium temperature, so the (6.15) 
reduces to the expression of the classical theory 

of irreversible processes, namely 
1s T −=J q . The 

non-classical terms of 
sJ  have been the subject 

of recent studies, both from a macroscopic point 
of view, by analyzing their connection with the 
non-local terms in the evolution equations of the 
fluxes, as well as from the viewpoint of 
information and kinetic theories by Jou et al 
(1995)1, Lebon et al (1994)16, Nettleton 
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(1992)17. 
1.3  Entropy Production and Evolution of 
Fluxes 

The entropy production is directly derived from 
the entropy balance equation 

This expression has the structure of a bilinear form 
 

0

1 0 2:s v vq X p X P Xσ = ⋅ + +  (1.3) 
Consisting of a sum products of the fluxes 

0

, v vq p and P and their conjugate generalized 
forces 

0

1 0 2, andX X X  . The latter follow from 
direct comparison of (5.17) with (5.16) . They are 
similar to the expressions obtained in CIT but 
contain additional terms depending on the time 
and space derivatives of the fluxes.  
Upon defining the proper form of the forces 

0

1 0 2, andX X X , it can be noted that there exists a 
class of transformations of the time derivatives of 

0

and vPq  which leave the entropy production 

invariant. They allow us to introduce frame-
indifferent time derivatives, for instance the 
corotational derivative, which is necessary in the 
analysis of rheological equations and in the 
discussion of the invariance of the properties of 
the equations of the fluxes1,18. 
To obtain evolution equations for the fluxes 
compatible with the positiveness of σ , we 

express the forces 
0

1 0 2, andX X X  as linear 
functions of the fluxes. As a consequence, we 
write 

 
00

1 1 0 0 2 2, ,v vX X p Xµ µ µ= = = Pq  (1.4) 

where the coefficients iµ  may depend on andu v  but not on the fluxes. When expressions (5.18) are 
introduced into (5.17), it led to, 

 
0 0

1 0 2 :s v v v vp pσ µ µ µ= ⋅ + + P Pq q  (1.5) 
Within the linear approximation, the generalized Gibbs equation (5.11) has the form 

 

0 0
1 1 01 2

2 :
2

v v v vds T du pT d d p dp d
T TT

ττ τ
ρζ ρηρλ

− −= + − ⋅ − − P Pv q q
 (1.6) 

For pure heat conduction, the entropy is given by,  

 
1 1

2ds T du d
T
τ

ρλ
−= − ⋅q q

 (1.7) 
After integration, (5.38) can be cast in the form 

 
( ) ( ) 1

2,
2eqs u s u

T
τ

ρ ρ
λ

= − ⋅q q q
 (1.8) 

Where ( )eqs uρ   is the local-equilibrium entropy depending only on u. The corresponding entropy 
production is  

 
2

1 .s

T
σ

λ
= q q

 (1.9) 
 
1.4 Non-equilibrium Equations of State 
The existence of generalized entropy compatible 
with some classes of evolution equations for the 
fluxes is already discuss in previous section. This 
formalism aims to describe processes which are 
compatible with the existence of non-equilibrium 
entropy whose rate of production is non-negative. 
Once the expression of the entropy is known, 
there is no difficulty in deriving the 
corresponding equations of state which are 
directly obtained as the first derivatives of the 

entropy with respect to the basic variables. In 
classical thermodynamics, it is known that the 
derivative of the entropy with respect to the 
internal energy (by keeping fixed the volume and 
the composition of the system) is the absolute 
temperature: the derivatives with respect to the 
volume and to the number of moles yield the 
equilibrium pressure and the chemical potentials 
(divided by the absolute temperature), 
respectively. It may then be asked whether the 
derivatives of the generalized entropy introduced 
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in EIT still allow one to define an absolute non-
equilibrium temperature, as well as a non-
equilibrium pressure and non-equilibrium 
chemical potentials. This is a very subtle and not 
completely solved problem which has, however, 
received partial answer in recent years, in that 
some specific gedanken experiments reflecting, in 
particular, the difference between the generalized 
temperature and the local-equilibrium 
temperature were proposed by Jou and Casas-
Vazquez (1992)  and a real experiment was 
interpreted by Luzzi23,24. Since this is a 
fundamental question, it deserves detailed 
attention. With this objective in mind, let us try to 
better apprehend the physical meaning of the 
generalized entropy defined by eq.(5.37). 
1.5 Physical Interpretation of Non-equilibrium 
Entropy 

00
1 1

1 2 : vdN T V dq T V dα α− −= − ⋅ − P  (1.10) 
Indeed, the extra terms in the non-equilibrium 
entropy may be related to the uncompensated 
heat generated during the relaxation to 
equilibrium: it is logical that they are related to 
dN. It should be stressed that Eu’s presentation is 
general and rather abstract but does not help in 
selecting the variables. The choice of the relevant 
variables must always be, motivated by 
experimental and (or) microscopic 
considerations, as in EIT wherein the choice of 

0

and vPq  is determined from the dynamical 
equations (5.34)-(5.36) which have found 

experimental confirmation. Another difficulty 
with respect to Eu’s argument is that it supposes 
the existence of an irreversible cycle. This is 
clearly not guaranteed as it implies the selection 
of a complete set of relevant variables. If the set 
is not complete, a cycle in the space of these 
variables would not correspond to a true cycle of 
the system, i.e. the final state could be different 
from the initial state despite the fact that the set of 
chosen variables take the same values in the 
initial and final states. 
 
5.6  Non-equilibrium Temperature  
Extended irreversible thermodynamics  fosters 
the idea of nonequilibrium temperature mainly 
influenced by the one that is used in kinetic 
theory. However, it is being claimed as distinctly 
different in its physical contents as the one given 
by the traditional zeroth law of thermodynamics. 
Muschik25,26  proposes an idea of contact 
temperature in nonequilibrium  which requires 
the use of a hypothetical heat reservoir (by its 
definition it is devoid of a heat flux) and making 
heat flux between it and the system (!) zero but 
they are silent about the possible existence of heat 
flux in the system before making of the 
diathermal contact. Bhalekar27 proposes a 
generalized zeroth law of thermodynamics has 
been framed that takes care of the necessity of 
thermal equilibration for sensing the temperature. 
The Gibbs equation (5.11) may writer as 

 

 

0 0
01 2

2
1 1 :

2
v v v vvv vds du dv d p dp d

T TT
ττ τπ

θ θ ζ ηλ
= + − ⋅ − − P Pq q

 (1.11) 
where, in contrast to (5.37), we have re-
introduced in the first two terms the generalized 
absolute temperature θ  and the thermodynamic 
pressure π instead of their respective local-
equilibrium approximations T and p.  
Another consequence of the non- equilibrium 
temperature is that even in steady situations the 
relation between heat flux and temperature 
gradient should be written as q λ θ= − ∇  instead 
of q Tλ= − ∇ . This result can be used as the 
starting point of a better understanding of θ .  
An analogous phenomenon should appear when 
the non-equilibrium situation is produced by 

other fluxes (as a shear viscous pressure or an 
electrical) instead of a heat flux in the system. 
Indeed, recent computer simulations have shown 
that in the presence of a shear viscous pressure, 
heat flows between regions which, nevertheless, 
are at the same local-equilibrium temperature 
(Todd and Evans 1997)28. Furthermore, there is 
some experimental evidence from spectroscopic 
analyses in photo excited plasma in 
semiconductors submitted to an external electric 
field, that indeed the temperature appearing in the 
non-equilibrium distribution function should 
depend not only on the local-equilibrium 
variables but also on the electrical current and 
heat flux (Luzzi et al 1997a )23,24. 
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The presence of a generalized temperature is not 
exclusive to expended irreversible 
thermodynamics. In his entropy-free formulation 
of non-equilibrium thermodynamics, Meixner 
(1973)29,30 postulated the existence of a 
dynamical temperature depending on the 
interactions of the system with the outside. 
Muller31 introduced a ‘coldness’ function 
assumed to depend on the empirical temperature 
and its time derivative: in a steady state, the 
‘coldness’ reduces to the local-equilibrium 
temperature, in contrast with the generalized 
temperature appearing in EIT. More recently, 
Muschik introduced the notion of contact 
temperature is not identical to the local-
equilibrium temperature. Finally, Keizer32 
proposed a non-equilibrium temperature defined 
as  the  derivative with respect to the internal 
energy of a generalized entropy derived from 
statistical considerations about molecular 
fluctuation; this temperature depends not only on 

the classical variables but also on the second 
moments of functions. It is worth stressing that 
the EIT generalized temperature may also be 
expressed in terms of the second moments of the 
energy fluctuation, in analogy with Keizer’s 
approach. 
The problems have been posed by the definition 
and measurement of a non-equilibrium 
temperature have been contested in recent papers 
by Hoover33, Nettleton17, Garcia-Colin19, 
Bhalekar and Garcia-Colin27. Apart from 
notation (one could use T and Teq instead of θ  
and T). a question under discussion is the nature 
of the variables to be kept constant during the 
differentiation of the entropy. With v and q fixed, 
one recovers the equation of state. If, instead, one 
keeps constant v and the quantity (τ1/ρλT2)1/2q 
the derivatives of the generalized entropy and of 
the local-equilibrium entropy coincide. Indeed, 
since 

 
( ) ( ) 2, , ,

2eq
vs u v q s u v q q
T
τ
λ

= − ⋅
 (1.12) 

then, of course, 

  2, ( )

eq

v T q v

ss
u uτ λ

∂ ∂  =   ∂ ∂     (1.13) 
Still another possibility is to maintain fixed the temperature gradient and, since eq.(5.52) implies that 
for steady situations 

 
22eq

vs s T T
T
τ λ

= − ∇ ⋅∇
 (1.14) 

one is led to  

 
( )( )1 3

,
1 2 / 2 v

v T

s T b c T T T
u

τλ ρ−

∇

∂  = + + ∇ ⋅∇ ∂   (1.15) 
where b is the exponent which characterizes the 
dependence of τ with T according to 

bTτ −≈ (i.e. 
b = 0 for Maxwell molecules and b = 1

2
  for hard 

spheres). In fact, it can be argued that not all 
these definition may be valid: recall, indeed, that 

in equilibrium thermodynamics ( ) 1
v

s u T −∂ ∂ =

but if one keeps constant the pressure instead of 

the volume during the differentiation, 
( ) p

s u∂ ∂
 is 

different from T-1 ; clearly  

 
( ) ( ) 11 1 pps u T pv cα

−−  ∂ ∂ = −   
with α the coefficient of thermal expansion and 
cp the specific heat at constant pressure. At the 

present time, it is not clear which among the 
above restrictions is the most suitable to define 
appropriately the non-equilibrium temperature. 

1.6 Applications 
Having reviewed and discussed the foundations 
of EIT, it may be asked which kind of problems 
will specifically be solved by using the methods 
and results of EIT. Among the applications, 
several subjects of special practical interest, such 
as non-classical heat transport, polymer physics, 
non-Fickian diffusion, transport in submicronic 
devices, and dielectric relaxation, as well as some 
other topics like super fluids, nuclear collisions, 
and cosmological models, have been selected 
which are appealing from a more theoretical point 
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of view. 
• Non-classical Heat Transport 

It was shown that Cattaneo’s model is 
particularly well suited for analyzing short-time 
or high-frequency heat transport beyond Fourier’s 
law. These situations are found, for instance, in 
explosions, the heating of metals by short laser 
pulses, or the fast compression of solid hydrogen 
pellets by means of laser pulses to achieve 
nuclear fusion. However, the Cattaneo equation 
(5.4) remains silent about the spatial 
microstructure, which may play a role at the scale 
of very short wavelengths, in miniaturized 
devices, or in materials with microstructure6 
whose transport properties depend, in general, on 
the ratio of the mean free path of the 

quasiparticles (e.g. phonons) and the 
characteristic length describing the microstructure 
as, for instance, the width of the layers in a 
layered structure. A well known model including 
some non-local effects are that of Guyer and 
Krumhansl (1964)38 which gives a satisfactory 
description of heat pulse propagation in dielectric 
crystals at very low temperature. However, even 
this model presents some limitations: it is a 
linearized equation; further, when coupled to the 
classical energy equation, it predicts infinite 
speed of propagation at very large frequencies: 
and therefore it is unable to describe ballistic 
propagation. An important question is then to ask 
how far EIT is able to describe not only high-
frequency but also short-wavelength phenomena. 

• Onsager Relations 
In classical irreversible thermodynamics39,40, the evolution equations of the state variables aa can be 
given the general form 

 

aa fL
t a

αβ
β

∂ ∂
= −

∂ ∂∑
 (1.16) 

where t/a ∂∂ α
 is the thermodynamic flux, f is the free energy, 

β∂∂ a/f  the thermodynamic force, and 
αβL the phenomenological coefficients. The latter obey the well known Onsagar-Casimir relations21 

 L Lαβ βα= ±  (1.17) 
wherein the sign + (respectively - ) refers to state variables 

αa  and 
βa  with the same (respectively 

different) parity under time reversal. These equations may formally be cast in the form 

 
. ......a f fL M

t a a

α
αβ αβ

β β
β β

∂ ∂ ∂ = − − ∇ + ∂ ∂ ∂ 
∑ ∑

 (1.18) 
where aα stands for qi, Q(ij) and Q, respectively and  

 1 2

qQ Qq TM M λη
τ τ

= =
 (1.19) 

 1 3

qQ Qq TM M λζ
τ τ

= =
 (1.20) 

or more generally Mαβ = Mβα. These reciprocity 
relations, which are derived on purely 
macroscopic grounds, may be considered as 
generalizations of the Onsagar-Casimir relations. 
It is worth noticing that the argument leading to 
the symmetry of the coefficients Mαβ parallels 
the demonstration given by Onsagar himself, who 
postulated that the fluxes are the time derivatives 
of the state variables while the forces are the 
derivatives of a thermodynamic potential with 
respect to the state variables. There is, however, 
one important difference to the Onsagar-Casimir 

results it concerns the change of sign. Therefore, 
one should expect skew symmetry according to 
the Onsagar-Casimir rules. But instead it is seen 
that relations (5.76) exhibit symmetry properties. 
The above observations seem to indicate that, 
under time reversal, microscopic reversibility 
requires not only that the sign of the time be 
reversed but also that of operator nabla : 

−∇→∇ .  

1.7 Critical Study 
First of all, EIT clearly emphasizes the strong 
correlation between the transport equations and 
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thermodynamics. One cannot formulate transport 
equations independently of their thermodynamic 
background. For instance, it follows from the 
present work that introducing relaxation terms in 
the transport equations results in a modification 
of the expression of entropy whereas the presence 
of non-local terms leads to a generalization of the 
expression of the entropy flux. In that respect, 
EIT suggests that in the future more attention 
should be dedicated to this unifying aspect, which 
is usually forgotten, because of the almost 
exclusive focus on transport equations for 
themselves. 
From a fundamental point of view, EIT has raised 
more challenging problems during the last decade 
than in the initial stage of its formulation. D. Jou, 
Casas Vazquez and G. Lebon has pointed out that  
rather than invalidating the basic concepts of the 
theory, EIT has raised important and fundamental 
questions in non-equilibrium thermodynamics 
and statistical mechanics. Among the open 
questions are the meaning of temperature and 
entropy in non-equilibrium states, and the relation 
between the H theorem and the formulation of the 
second law in non-equilibrium processes (Lebon 
et al 1992, 1996, Garcha-Colin 1995). Another 
important problem is the formulation of non-
equilibrium equations of state and, in particular, 
the definitions of temperature and pressure 
outside equilibrium. Definite answers are 
undoubtedly beyond the scope of EIT, but the 
latter may be helpful in proposing some ways out 
and in formulating them in explicit terms. It 
should also be recalled that in classical 
irreversible thermodynamics such fundamental 
questions do not arise as they are eluded by 
appealing to the local – equilibrium postulate. 
Concerning the selection of variables, it is shown 
that the use of the ‘equilibrium’ slow variables 
complemented by fast variables taking the form 
of fluxes of mass, momentum and energy is 
generally sufficient to solve a great variety of 
problems. The time-evolution equations of these 
variables generalize the classical transport 
equations of Fourier, Fick, and Newton: they 
display memory effects and may contain 
nonlinear and non-local contributions; they 
guarantee, in addition, that the causality principle 
demanding that effect comes after the cause is 
satisfied. It is evident that an increasing number 

of variables is necessary to describe high-
frequency responses of systems: Muller31 has 
computed the density correlation function by 
including in it more and more higher-order 
fluxes, and have compared them with the 
experimental results obtained from light 
scattering in gases. They show that after taking 
230 moments, the results are no longer affected 
by the addition of more moments. Thus, 
depending on the details that one wants to 
reproduce, it appears that one should include an 
increasing number of variables. On the other hand 
the problem soon becomes intractable when too 
large a number of variables are involved. In this 
context, let us mention the work of 
Dedeurwaerdere35 which, starting from an 
infinite number of fluxes, introduces a method 
based on an asymptotic continued-fraction 
expansion of the frequency-and wavelength-
dependent variables and to include the effects of 
all the others in some effective relaxation times. 
This topic has also been examined from the 
microscopic point of view (Ichiyanagi 1995b, 
1996, Luzzi et al 1998)41,24. Instead of the 
common strategy that consists of eliminating all 
the fast variables, in order to describe the most 
prominent features of high-frequency response 
they include a few relevant fast variables and 
eliminate the others by a procedure similar to the 
renormalization scheme used in the analysis of 
critical phenomena.  
Another difference between EIT and the classical 
theories is the formulation of non-equilibrium 
equations of state: as a matter of fact, the latter 
are now flux dependent. A typical example is the 
caloric equation of state wherein the internal 
energy does not only depend on the local-
equilibrium temperature but, in addition, on the 
fluxes. This dependence is supported by 
experimental results on the decay of photo 
excited plasma in semiconductors in the presence 
of an electric current, or by computer simulations. 
Moreover, such a generalized equation of state is 
a consequence of the existence of a non-
equilibrium temperature different from the 
classical local-equilibrium temperature 
introduced is most formalism. Kinetic theory 
developments indicate that the non-equilibrium 
temperature is directly related to the translational 
kinetic energy of the particles in the plane normal 
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to the heat flux. More generally, it is also 
expected that different degrees of freedom may 
have different ‘temperatures’, in such a way that 
thermometers sensible to different degrees of 
freedom will indicate different temperature. 
Similar conclusions hold for the non-equilibrium 
pressure and non-equilibrium chemical potential 
which are also allowed to be flux dependent  
The relation between the Boltzmann and the 
macroscopic entropy was clarified where the link 
between the H theorem and the second law of 
thermodynamics. Indeed, the H theorem refers to 
the evolution of the microscopic Boltzmann 
entropy, defined in terms of the one-particle 
distribution function which is the exact solution 
of the Boltzmann equation, whereas the second 
law of thermodynamics is formulated in terms of 
macroscopic entropy, defined from a reduced 
number of macroscopic variables. 
The debate about such fundamental questions as 
the definitions of non-equilibrium temperature, 
pressure, entropy and the H theorem has been 
given a new impetus mainly due to the recent 
development of EIT. Thus, it was shown that the 
latter can be described in terms of a generalized 
Hamiltonian structure in the light of formulation 
of GENERIC (General Equations of Non-
equilibrium Reversible and Irreversible coupling) 
developed recently by Grmela et al (1998)42-44. 
It is well recognized that a macroscopic theory is 
not fully self-consistent as it contains unknown 
phenomenological coefficient which cannot be 
determined and interpreted without referring to 
experiments or microscopic model theories.  
Second-sound propagation was evidenced 
experimentally during the 1960s and explained 
theoretically within the framework of EIT. 
Second sound was first discovered in liquid 
helium II, and the peculiar properties of He are 
usually investigated by means of Landau’s 
classical two-fluid model. The problem has been 
revisited recently by several authors who 
proposed a more general description based on 
EIT. 
Radiation hydrodynamics is another example of 
non-classical heat transport. This is not surprising 
as radiation has a well-defined maximum speed, 
and therefore the need of a hyperbolic equation 
for the description of energy transport is widely 
recognized. A particularly interesting result 

arising from EIT is that it imposes that a signal 
such as the heat flux, cannot reach an unbounded 
valve but is ‘saturated’ by a limiting value equal 
to the energy density times a maximum speed, 
say the speed of light in radiative heat transfer. 
This saturation effect cannot be described by the 
classical Fourier law. 
Another privileged domain of application of EIT 
is that of polymer solutions, as they exhibit rather 
long relaxation times for the viscous pressure 
tensor. EIT has proved to be of use in obtaining 
the relevant constitutive equations and, in that 
respect, it confirms in several cases the equations 
provided by other approaches. In contrast to the 
formalisms based on internal variables, EIT 
identifies from the start the viscous pressure as an 
additional variable. This allows one to unify the 
description of very large classes of material 
systems, passing from ideal gases to viscoelastic 
materials, the fundamental differences being the 
value of the relaxation time and the microscopic 
form of the pressure tensor. Another more 
exclusive advantage of EIT is that it predicts 
generalized equations of state which are 
particularly well suited to study phase transitions 
in polymer solutions. It is well known that two 
effects, a pure thermodynamically one and a 
dynamical one, may contribute to such phase 
changes. Since both effects are naturally 
incorporated in the description of EIT, it is not 
surprising that one obtains a better agreement 
with experiments concerning the shift of the 
critical temperature or the spindle curve than with 
more classical approaches. In parallel with non-
Fourier heat transport, non-Fickian mass 
diffusion finds a natural place in EIT. Non-
standard diffusion is of practical importance 
mainly in polymer diffusion, like sorption or 
permeation of a solvent in a film. As shown in 
section, EIT is also well suited for the description 
of Taylor’s diffusion which plays an important 
role in many practical applications. 
In analogy with the classical theory, an absolute 
temperature θ and a generalized pressure π as 
partial derivatives of the entropy with respect to 
the internal energy and the volume, were defined 
respectively. These quantities contain non-
equilibrium contribution. 
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1.8 Conclusion 
The variety of subjects covered by the present 
review demonstrates that the domain of 
applications of EIT has been considerably 
enlarged during the last decade. EIT has been 
shown to be the specific corpus wherein a wide 
variety of problems find a natural 
accommodation. A more thorough treatment of 
these topics is a typical challenge of EIT at the 
level of applications.  
To summarize, the motivations behind the 
formulation of EIT were the following: 
To go beyond the local equilibrium hypothesis 
To avoid the paradox of propagation of signals 
with an infinite velocity 
To generalize the Fourier, Fick, Stokes, and 
Newton laws by including: 

• Memory effects (fast processes and 
polymers) 

• Non-local effects (micro- and nano-
devices) 

• Non-linear effects (high powers) 
The main innovations of the theory are: 
To raise the dissipative fluxes to the status of 
state variables 
To assign a central role to generalized entropy, 
assumed to be a given function of the whole set 
of variables, and whose rate of production is 
always positive definite 
Extended irreversible thermodynamics provides a 
decisive step towards a general theory of non-
equilibrium processes by proposing a unique 
formulation of seemingly such different systems 
as dilute and real gases, liquids, polymers, 
microelectronic devices, nano-systems, etc. EIT 
is particularly well suited to describe process 
characterized by situations where the product of 
relaxation time and the rate of variation of the 
fluxes is important, or when the mean free path 
multiplied by the gradient of the fluxes is high; 
these situations may be found when either the 
relaxation times or the mean free paths are long, 
or when the rates of change in time and space are 
high. 
In summary, EIT offers new perspectives which 
must be carefully scrutinized, and henceforth 
enlarge the domain of applications of classical 
thermodynamics. The present time is rather 
exciting in relation with the development of EIT. 
The fundamental questions raised above are not 

particular to EIT, but they are rather general and 
fundamental in non-equilibrium thermodynamics 
and statistical physics. Comparison between EIT 
and other approaches should be encouraged. It is 
also hoped that in the future more applications 
with industrial impact will be developed.  
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