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Abstract 
Capturing an image with sensors is an 
important step in many areas. The captured 
image is used in several applications, which 
all have their own requests on the quality of 
the captured image. Acquired images are 
often degraded with blur, noise, or blur and 
noise simultaneously. A novel method for 
color image enhancement using adaptive 
feature extraction based on particle swarm 
optimization (PSO) framelet. In framelet 
extraction blurring component analysis 
effectively and then apply Partial differential 
equation based-diffusion–shock-filter 
coupling model, where noisy and blurred 
images are denoised and sharpened. The 
proposed model is based on using the single 
vectors of the gradient magnitude and the 
second derivatives as a manner to relate 
different color components of the image. 
This model can be viewed as a generalization 
of the Bettahar–Stambouli filter to 
multivalued images. The proposed algorithm 
is more efficient than the mentioned filter 
and some previous works at color images de-
noising and deblurring without creating 
false colors. 
Keywords: Gray image, Adaptive framlet 
filter, PSO, Adaptive Diffusion filter, Blur 
cluster image. 

 
I. INTRODUCTION 
Digital image processing is the use of computer 
algorithms to perform image on digital images. 
As a subcategory or field of digital signal 
processing, digital image processing has many 
advantages over analog image processing. It 
allows a much wider range of algorithms to be 
applied to the input data and can avoid 
problems such as the build-up of noise and 

signal distortion during processing. Since 
images are defined over two dimensions 
(perhaps more) digital image processing may be 
modeled in the form of Multidimensional 
Systems. 

An image may be defined as a two-
dimensional function, f(x, y) where x and y are 
spatial coordinates, and the amplitude of f at any 
pair of coordinates (x, y) is called the intensity 
or gray level of the image at that point. When x, 
y, and the amplitude values of f are all finite, 
discrete quantities, we call the image a digital 
image. The field of digital image processing 
refers to processing digital images by means of a 
digital computer. Note that a digital image is 
composed of a finite number of elements, each 
of which has a particular location and value. 
These elements are referred to as picture 
elements, image elements and pixels. Pixel is the 
term used most widely to denote the elements of 
a digital image. 
Vision is the most advanced of our senses, so it 
is not surprising that images play the single most 
important role in human perception. However, 
unlike humans, who are limited to the visual 
band of the electromagnetic (EM) spectrum, 
imaging machines cover almost the entire EM 
spectrum, ranging from gamma to radio waves. 
They can operate also on images generated by 
sources that humans do not customarily 
associate with images. These include ultrasound, 
electron microscopy, and computer-generated 
images. Thus, digital image processing 
encompasses a wide and varied field of 
applications. 

II.LITERATURE SURVEY 
J. Weickert, B.M.Haar Romeny 

proposes,”Image Enhancement Based On 
Statistics Of Visual Representation” This paper 

http://en.wikipedia.org/wiki/Digital_image
http://en.wikipedia.org/wiki/Digital_signal_processing
http://en.wikipedia.org/wiki/Digital_signal_processing
http://en.wikipedia.org/wiki/Multidimensional_Systems
http://en.wikipedia.org/wiki/Multidimensional_Systems
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introduces a novel algorithm to image 
enhancement that exploits the multi-scale 
wavelet and statistical characters of visual 
representation. Processing includes the global 
dynamic range (brightness) correction and local 
contrast adjustment, whose parameters are 
picked automatically by the information 
contained in the image itself. Experimental 
results show that the new algorithm 
outperforms other many existing image 
enhancement methods and is highly resilient to 
the effects of both the image-source variations.  

L. Alvarez and L.Mazorra  proposes, 
“The Application Of Multi Wavelet Filter 
Banks To Image Processing” Multi wavelets 
are a new addition to the body of wavelet 
theory. Realizable as matrix-valued filter banks 
leading to wavelet bases, multi wavelets offer 
simultaneous orthogonality, symmetry, and 
short support, which is not possible with scalar 
two-channel wavelet systems.  
 

After reviewing this theory, we examine 
the use of multi wavelets in a filter bank setting 
for discrete-time signal and image processing. 
Multi wavelets differ from scalar wavelet 
systems in requiring two or more input streams 
to the multi wavelet filter bank. Algorithms for 
symmetric extension of signals at boundaries 
are then developed, and naturally integrated 
with approximation-based preprocessing. We 
describe an additional algorithm for multi 
wavelet processing of two-dimensional for 
(2-D) signals, two rows at a time, and develops 
a new family of multi wavelets (the constrained 
pairs) that is well-suited to this approach. This 
suite of novel techniques is then applied to two 
basic signal processing problems, denoising via 
wavelet-shrinkage, and data compression. After 
developing the approach via model problems in 
one dimension, we apply multi wavelet 
processing to images, frequently obtaining 
performance superior to the comparable scalar 
wavelet transform. 

 S. Bettahar and A. B. Stambouli 
proposes,” Image Enhancement  And  De-
Noising By Complex Diffusion Processes” The 
linear and nonlinear scale spaces, generated by 
the inherently real-valued diffusion equation, 
are generalized to complex diffusion processes, 
by incorporating the free Schrodinger equation. 
A fundamental solution for the linear case of 
the complex diffusion equation is developed. 
Analysis of its behavior shows that the 

generalized diffusion process combines 
properties of both forward and inverse diffusion. 
We prove that the imaginary part is a smoothed 
second derivative, scaled by time, when the 
complex diffusion coefficient approaches the 
real axis. Based on this observation, we develop 
two examples of nonlinear complex processing: 
a regularized shock filter for image enhancement 
and a ramp preserving denoising process.  
III.  RGB COLOR MODEL 
The simplest and most common color model is 
RGB (red, green, blue) model, which is based on 
a Cartesian coordinate system (Figure 2.1). In 
RGB model, each color appears in its primary 
spectral components of red, green, and blue.  We 
use this for color monitors, scanners, image 
storage, etc. 
RGB COLOR CUBE 

RGB model is used in the processing of 
aerial and satellite multiband image data. Aerial 
and satellite images are obtained by image 
sensors operating on the different spectral 
ranges. Each image plane has physical meaning, 
So color combination obtained using RGB is 
convenient for spatial data.  

Figure 1:  RGB cube 
  
RGB (RED GREEN BLUE) 

The RGB colour model relates very 
closely to the way we perceive colour with the r, 
g and b receptors in our retinas. RGB uses 
additive colour mixing and is the basic colour 
model used in television or any other medium 
that projects colour with light. It is the basic 
colour model used in computers and for web 
graphics, but it cannot be used for print 
production.  

The secondary colours of RGB – cyan, 
magenta, and yellow – are formed by mixing 
two of the primary colours (red, green or blue) 
and excluding the third colour. Red and green 
combine to make yellow, green and blue to 
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make cyan, and blue and red form magenta. 
The combination of red, green, and blue in full 
intensity makes white.  

 
      Figure 2: RGB (RED GREEN BLUE) 
 
PARTICLE SWARM OPTIMIZATION  

In computer science, particle swarm 
optimization (PSO) is a computational method 
that optimizes a problem by iteratively trying to 
improve a candidate solution with regard to a 
given measure of quality. PSO optimizes a 
problem by having a population of candidate 
solutions, here dubbed particles, and moving 
these particles around in the search-
space according to simple mathematical 
formulae over the 
particle's position and velocity. Each particle's 
movement is influenced by its local best known 
position and is also guided toward the best 
known positions in the search-space, which are 
updated as better positions are found by other 
particles. This is expected to move the swarm 
toward the best solutions.PSO is originally 
attributed to Kennedy, Eberhart and Shi and 
was first intended for simulating social 
behaviour, as a stylized representation of the 
movement of organisms in a bird flock  orfish 
school.  

The algorithm was simplified and it was 
observed to be performing optimization. The 
book by Kennedy and Eberhart describes many 
philosophical aspects of PSO and swarm 
intelligence. An extensive survey of PSO 
applications is made by Poli. PSO makes few 
or no assumptions about the problem being 
optimized and can search very large spaces of 
candidate solutions. However, metaheuristics 
such as PSO do not guarantee an optimal 
solution is ever found. More specifically, PSO 
does not use the gradient of the problem being 
optimized, which means PSO does not require 
that the optimization problem 
be differentiable as is required by classic 
optimization methods such as gradient 

descent and quasi-newton methods. PSO can 
therefore also be used on optimization problems 
that are partially irregular, noisy, change over 
time. 

A basic variant of the PSO algorithm 
works by having a population (called a swarm) 
of candidate solutions (called particles). These 
particles are moved around in the search-space 
according to a few simple formulae. The 
movements of the particles are guided by their 
own best known position in the search-space as 
well as the entire swarm's best known position. 
When improved positions are being discovered 
these will then come to guide the movements of 
the swarm. The process is repeated and by doing 
so it is hoped, but not guaranteed, that a 
satisfactory solution will eventually be 
discovered. 

Formally, let f: ℝn → ℝ be the cost function 
which must be minimized. The function takes a 
candidate solution as argument in the form of 
a vector of real numbers and produces a real 
number as output which indicates the objective 
function value of the given candidate solution.  
 
The gradient of f is not known. The goal is to 
find a solution a for which f(a) ≤ f(b) for all b in 
the search-space, which would mean a is the 
global minimum. Maximization can be 
performed by considering the function h = -
f instead. 
Let S be the number of particles in the swarm, 
each having a position xi ∈ ℝn in the search-
space and a velocity vi ∈ ℝn. Let pi be the best 
known position of particle i and let g be the best 
known position of the entire swarm. A basic 
PSO algorithm is then: 
For each particle i = 1 , ..., S  do: 
Initialize the particle's position with a uniformly 
distributed random vector: xi ~ U(blo, bup), 
where blo and bup are the lower and upper 
boundaries of the search-space. 
Initialize the particle's best known position to its 
initial position: pi ← xi 
If (f(pi) < f(g)) update the swarm's best known 
position: g ← pi 
Initialize the particle's velocity: vi  ~ U(-|bup-
blo|, |bup-blo|) 

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Iterative_method
https://en.wikipedia.org/wiki/Candidate_solution
https://en.wikipedia.org/wiki/Point_particle
https://en.wikipedia.org/wiki/Optimization_(mathematics)#Concepts_and_notation
https://en.wikipedia.org/wiki/Optimization_(mathematics)#Concepts_and_notation
https://en.wikipedia.org/wiki/Formula
https://en.wikipedia.org/wiki/Formula
https://en.wikipedia.org/wiki/Formula
https://en.wikipedia.org/wiki/Position_(vector)
https://en.wikipedia.org/wiki/Velocity
https://en.wikipedia.org/wiki/James_Kennedy_(social_psychologist)
https://en.wikipedia.org/wiki/Russell_C._Eberhart
https://en.wikipedia.org/wiki/Computer_simulation
https://en.wikipedia.org/wiki/Social_behaviour
https://en.wikipedia.org/wiki/Social_behaviour
https://en.wikipedia.org/wiki/Flocking_(behavior)
https://en.wikipedia.org/wiki/Swarm_intelligence
https://en.wikipedia.org/wiki/Swarm_intelligence
https://en.wikipedia.org/wiki/Riccardo_Poli
https://en.wikipedia.org/wiki/Gradient
https://en.wikipedia.org/wiki/Differentiable
https://en.wikipedia.org/wiki/Gradient_descent
https://en.wikipedia.org/wiki/Gradient_descent
https://en.wikipedia.org/wiki/Quasi-newton_methods
https://en.wikipedia.org/wiki/Candidate_solution
https://en.wikipedia.org/wiki/Row_vector
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Gradient
https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)
https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)
https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)
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Until a termination criterion is met (e.g. 
number of iterations performed, or a solution 
with adequate objective function value is 
found), repeat: 

For each particle i = 1, ..., S do: 

Initialize the particle's position with 
a uniformly distributed random 
vector: xi ~ U(blo, bup), where blo and bup are 
the lower and upper boundaries of the search-
space. 

Initialize the particle's velocity: vi ~ U(-
|bup-blo|, |bup-blo 

IV.BLOCK DIAGRAM 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Block diagram of Image 
Enhancement using Adaptive Framelet 
Diffusion filter 
 
THE FRAMELET TRANSFORM 
As it is well known, except for the Haar filter 
bank, two-band finite impulse response (FIR) 
orthogonal filter banks do not allow for 
symmetry. In addition, imposition of 
Orthogonality for the two-band FIR filter banks 
requires relatively long filter support for such 
properties as a high level of smoothness in the 
resulting scaling function and wavelets, as well 
as a high approximation order. Symmetry and 
orthogonality can both be obtained if the filter 
banks have more than two bands. Furthermore, 
due to the critical sampling, orthogonal filters 
suffer a pronounced lack of shift invariance, 
though the desirable properties can be achieved 
through the design of tight frame filter banks, 

of which orthogonal filters are a special case. In 
contrast to orthogonal filters, tight frame filters 
have a level of redundancy that allows for the 
approximate shift invariance behavior caused by 
the dense time-scale plane. Besides producing 
symmetry, the tight frame filter banks are 
shorter and result in smoother scaling and 
wavelet functions. 
 
 TIGHT FRAMELET FRAME 

A set of functions {φ1, φ2 , ..….φN−1 }   in a 
square integrable space L2 is called a frame if 
there exist A > 0, B < ∞ so that, for any function 
f ∈   L2. 
  Where A and B are known as frame bounds. 
The special case of A = B is known as tight 
frame. In a tight frame we have, for all f ∈ L2  

We can find the fast wavelet frame (or 
frame let) transform, from multi resolution 
analysis which is generally used to derive tight 
wavelet frames from scaling functions. The 
frame condition can be explained in terms of 
over sampled filters, given a set of N filters, we 
define them in terms of their polyphone 
components: 
      
 Hi (z) = Hi,0 (z2 )+ z−1Hi,1 (z2 ), 
i = 0, 1 ,2,.....N −1 
  Where 
         H i,l (z) =∑ hi (2n − l)z−n ,l = 0,1, 2..... 
Now we can define the signal X (z) in terms of   

poly phase    components,   
                             X (z) = ((X 0 (z) X l (z)))                        

The equation ( X
l (z)), l =0, 1 is defined in terms 

of the time domain signal, x (n), as follows:  
                                         

X l (z) =∑ x(2n − 1)z− n                                         
 The given input signal is X (z) and obtained 
output signal is   X (z ) .these two signals 
satisfying the perfect reconstruction condition 
when   

X (z) = X (z) 
Similarly in terms of filter banks           

HT (z )H(z-1) = I 
On the other hand, in our proposed 

method we are having   a three-band tight frame 
filter bank and PR conditions can be expressed 
in terms of the Z -transforms of the filters h

0, h
1, 

h
2 . Moreover, the perfect reconstruction (PR) 

conditions can be easily extended to N filters 

  

       

https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)
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down sampled by 2:  
X ( z ) = 1 / 2[ H 0 ( z ) H 0 ( z -1 ) + H 1 ( z -1 )H 
1 ( z )] X ( z ) +1/ 2[ H 0 (- z ) H 0 ( z -1 ) + H 1 ( 
z -1 ) H 1 (- z )] X (- z )     
From the above equation we can get the perfect 
reconstruction conditions 
H0 (z) H0 (z-1)+ H1(z-1)H1 (z) = 2; 
H0 (z-1) H0 (-z) + H1 (z-1)H1(-z) = 0 
The following Figure 1 represents the three 
band perfect reconstruction filter bank. 

            
Figure 4: A three-band PR filter bank.  
 

We already know, about the PR 
conditions for the filter banks. We can write 
these perfect reconstruction conditions in 
matrix form as 
                       HT (z) H (z-1) = I 
H (z)   is a   matrix [4 ]. 
     The symmetry condition for h0 (n) is    

 h0 (n) = h0 (N −1 − n)   
Where  N is the length of the   filter h0 (n).  

To show this, suppose that h
0(n), h

1(n) & h
2(n) 

satisfy the PR conditions and that            
       h2 (n) =   h1 (N − 1 − n)        
 The 2D extension of filter bank is illustrated 
on this figure 
 

  
Figure 5: An over sampled filter bank for a 
2-D image 
 
V.RESULT: 

A novel method for color image 
enhancement using adaptive feature extraction 
based on particle swarm optimization (PSO) 
framelet. In framelet extraction blurring 
component analysis effectively and then apply 
Partial differential equation based-diffusion–

shock-filter coupling model, where noisy and 
blurred images are denoised and sharpened. The 
proposed model is based on using the single 
vectors of the gradient magnitude and the 
second derivatives as a manner to relate 
different color components of the image. This 
model can be viewed as a generalization of the 
Bettahar–Stambouli filter to multivalued images. 

  

 
 
VI.CONCLUSION 

A novel method for color image 
enhancement using adaptive feature extraction 
based on particle swarm optimization (PSO) 
framelet. In framelet extraction blurring 
component analysis effectively and then apply 
Partial differential  
equation are based on diffusion–shock-filter 
coupling model, where noisy and blurred images 
are denoised and sharpened. The proposed 
model is based on using the single vectors of the 
gradient magnitude and the second derivatives 
as a manner to relate different color components 
of the image. This model can be viewed as a 
generalization of the Bettahar–Stambouli filter 
to multivalued images. The proposed algorithm 
is more efficient than the mentioned filter and 
some previous works at color images de-noising 
and deblurring without creating false colors. 
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