
 

 
ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-3, 2019 

198 

 
AN INNOVATIVE GROUND STORAGE SYSTEM 

1P.Vigneshwaran, M.E., 
2Thirisooli. M, 3Vineeth. P, 4Shaajeeth@Shameer. S 

1Supervisor/Assistant Professor, Department of Civil Engineering, 
Muthayammal Engineering College, Rasipuram, Namakkal. 

2,3,4 Bachelor Of Engineering, Civil Engineering 
Muthayammal Engineering College, Rasipuram, Anna University: Chennai 

 
Abstract 
Solar energy is a very important source for 
the future development and has a very high 
potential. The main problems connected to 
its utilization are its low intensity and avail-
ability. Utilization of solar energy in the 
building sector is very interesting because the 
main energy needs are for heating and 
cooling. By using low temperature heating 
system and high temperature cooling system 
the quality of the energy needed from the 
building can match the one that can be given 
by using solar energy. Then, the main issue is 
to manage to make the energy coming from 
the solar available when is needed. In order 
to make it possible, storage system are 
necessary. This master thesis aim is to make 
a study of a ground heat storage. The study 
consists in the development of a 
configuration for ground heat storage, its 
modeling, and then the implementation of a 
computer program for the calculation of the 
performances of the system. For the 
modeling, has been important mainly the 
frequency domain approach that has 
permitted the implementation of fast 
programs. Two programs will be presented. 
The first one very fast, permits a rough 
analysis of the configuration and a first 
estimation of the system behavior; the second 
one, that is slower, permits to go more in 
detail, gives the possibility to change a lot of 
parameters that can have a big influence on 
the system performances. In this second 
program a lot of interest has been given to 
methods for the solution of large nonlinear 
system with the General minimal residual 
method. For the implementation of the 
programs and of the finite element 

simulation has been used Comsol 
Multiphisics and Comsol Script. The results 
obtained are interesting and they encourage 
the development of the tool and future 
investigation on this kind of system. 

 
I. INTRODUCTION 

This master thesis if focused on the 
investigation of the ground storage system. A 
briey introduction is given in this chapter to 
introduce the topic. 

1.1 Ground heat storage 
Ground temperature below a certain depth is 

almost constant all over the year. This is due 
basically to the fact that the soil mass is very 
large and then its thermal capacity is large as 
well. As a consequence, the temperature 
uctuation at a certain depth is decreasing 
compared with the one of the surface. Moreover 
there is a time lag between these two 
temperature waves. That means that the soil 
temperature is higher then the air temperature in 
winter and is lower in summer. For this reason 
the idea to use the soil as heat exchanger to 
preheat a working uid in winter and precool it in 
summer has been developed. In the following 
sections it will be presented some results 
obtained in previous studies about thermal 
behavior of the ground and an overview of the 
existent kind of heat exchanger designed to 
exploit this source. 

 
1.1.1 Ground thermal behavior 
Several studies to investigate the thermal 

behavior of the ground have been led; both 
numerical and experimental data are available 
in literature. Popiel performed experimental 
measurement with thermocouple in the ground 
for the period between summer 1999 and spring 
2001 in Poznan, Poland. The conclusion drawn 
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starting from the measurements are that three 
zones in the ground can be distinguished: 

1. Surface zone from 0 to 1 m of depth; the 
soil temperature is sensitive to short time 
changes of outside temperature. 

2. Shallow zone from 1 to 8 m (for dry 
soils) of depth or 20 m (for moist heavy soils); 
the ground temperature is almost constant and 
close to the average annual temperature. 

3. Deep zone below 8m or 20m; the 
ground temperature is constant and rising very 
slow with depth because of the geothermal 
gradient. 

1.1.2 Types of ground heat exchanger 
To exploit the ground thermal capacity it is 

necessary a heat exchanger. Basically it consists 
in buried pipes in the ground. The useful zones, 
following previous description, are the shallow 
zone and the deep zone. To exploit the deep 
zone is necessary to drill the ground with very 
large vertical borehole and that is worthy just if 
the geothermal gradient of temperature is  

Significant, otherwise it’s a very expensive 
practice. The other possibility is to exploit the 
shallow zone. In this second case, the way to 

exploit it is by burying horizontal pipes in the 
ground. The system ground pipes behave like an 
heat exchanger. In general there are two types 
of those ground heat exchanger. The 
classification is between open and closed 
systems. In an open system the working fluid 
that is exchanging heat with the ground is the 
same that after can be used for space heating or 
cooling. In the closed system the media is used 
as a source to exchange heat with another fluid. 
This way has some drawbacks cause another 
heat exchanger is required, and this introduce 
new irreversibility then the energy that can be 
exploited is less than the one of a direct system. 
On the other hand, by using an indirect system 
air quality in the secondary loop is not needed. 
Moreover, the air can be recirculated in the loop 
with a large influence on the overall 
performance of the system. By recirculation air 
in the loop during winter, low inlet temperature 
in the system are avoided, and then it is realized 
the possibility to make the system able to 
supply air at interesting temperature for a longer 
period. 

 

 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

                Figure 1.1: System studied by air solar collector to collect heat, and horizontal piping 
               In the ground to store it in the ground. 

 
 
 

1.1.3  Heat pumps 
Heat pumps are system designed to transfer heat 
from a colder source at a temperature Tsource 
to a warmer one at temperature Tsink, as a 
consequence of a work input. In order to do that 
a thermodynamical cycle between the 
temperature T1 and T2 is necessary. The 
efficiency of a thermodynamical system is 
upper limited by the Carnot efficiency that for a 
heat pump can be expressed as follow: 
 

ηc  =   𝑇𝑇1
𝑇𝑇1−𝑇𝑇2

 

The system efficiency is highly dependent on 
T1 and T2, and is much more efficient if T2 is 
close to T1. T1 is fixed by the chosen 
application: if the aim of the heat pump is to 
warm air at the temperature of 30C, the 
temperature T1 will be slightly higher than this. 
T2, on the other hand, is depending on the 
available heat source. It is very common to 
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couple a heat pump with a ground thermal 
storage. Heat pumps are very efficient when 
they work in nominal condition, but if they are 
working in a different way the COP decreases a 
lot. 
Then, it is very important to have a stable 
source. Geothermal source heat pumps usually 
work in this way. During summer the ground is 
colder then the outdoor air then the heat is 
pumped in the soil; in winter there is the 
opposite situation, then the heat is pumped from 
the ground to the building. The heat pump in 
summer charge the ground with the heat 
pumping heat from the house to the soil; and in 
winter the heat pump discharge the ground to 
heat the house. In case like Sweden, in which 
there is almost no need for air conditioning not 
a big amount of heat can be pumped in the 
ground from the house then a system to replace 
that case can be interesting. 
 
1.1.4 Why air? 
In the present study the configuration is a 
horizontal loop of buried pipes. For this first 
study the working fluid will be air. The choice 
of air is due to different reasons, but mainly 
because of his very low density and then 
because of the possibility to drive it inside the 
pipes with much lower energy consumption 
compared with other fluids that has higher 
density like water. On the other hand the cp of 
air is very low then a larger mass is necessary to 

transfer the same heat quantity. Moreover, air is 
very clean and if moisture formation is 
prevented there is no danger of corrosion. It’s 
preferable the option of closed system because 
sanitary problem can be connected to the direct 
use of the air injected in the pipes and also, as 
said before, it can be advantageous because in 
that way air can be recirculated. 
 
1.1.5 Air solar collector 
The target to achieve is storing some heat in the 
soil, therefore a possible solution to gain the 
performance of the system can be couple a solar 
collector with the ground. The solar collector 
can be installed in the south facade of the house 
and in the south side of the roof. Therefore, the 
surface that can be exploited is very high. From 
the wideness of the collector depends the 
amount of solar radiation that can be exploited. 
It’s hard to Enhance performance of solar 
collector but it’s easy to increase the receiving 
surface, then, it’s always convenient to make it 
larger. In the present work the attention will be 
focused on a system in which a solar collector is 
coupled with ground heat storage. A previous 
study of such a system has been done by 
Noguera. In figure 1.2 is presented the system 
configuration of the Calidhogar house an 
example of low-energy building. The attention 
in the next chapters will be focused on the study 
of a similar configuration. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.2: Calidhogar house 
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Enhance performance of solar collector but it’s 
easy to increase the receiving surface, then, it’s 
always convenient to make it larger. In the 
present work the attention will be focused on a 
system in which a solar collector is coupled with 
ground heat storage. A previous study of such a 
system has been done by Noguera. In figure 1.2 
is presented the system configuration of the 
Calidhogar house an example of low-energy 
building. The attention in the next chapters will 
be focused on the study of a similar 
configuration. 

 
THE GROUND HEAT STORAGE MODEL 

2.1  Objective and methodology 
In order to investigate the ground storage 
performances has been chosen the development 
of a model able to describe the thermal behavior 
of the ground. That could be very interesting 
mainly to study thermal losses, and to 
investigate how much the thermal inertia of the 
ground can be exploited. The analysis of ground 
storage involve a big volume in the ground 
therefore it is very expensive from a 
computational point of view to make an analysis 
in the time domain. And if it is considered that 
basically the heat transfer in the ground is by 
conduction, the partial differential equation that 
describe the phenomenon is linear. This permits 
to apply the superposition method and then the 
Fourier analysis as it will be explained 
hereinafter. The configuration of the case 
studied is a pipe embedded in the ground with 
insulation on top. To reduce the computational 
costs first it is performed a bi-dimensional 
analysis of the cross section of the ground in the 
frequency domain. Using this kind of analysis it 
is possible to get the parameter of the system 
(admittances and transmittances); and therefore 
describing the phenomenon with different input 
signals. Before starting the description of the 
model it is necessary to give few pieces of 
information about the frequency domain 
analysis. 

2.2 Linear system and Fourier analysis 
2.2.1 LTI systems 
The choice of the analysis typology depends 

on the characteristics of the problem to face. 
Basically, these are related to the kind of 
differential equations that characterize the 
system. The simplest system is the LTI system 
(linear, time invariant). This is characterized by 
two features: 

- linearity: the system satisfies the 
superposition property. For instance, if x1(t) and 
x2(t) are two input signals and y1(t) and y2(t) 
are the output then y(t) = y1(t) + y2(t) is the 
output signal of x(t) = x1(t) + x2(t). 

 
- Time invariance: it means that, if an 

input signal is applied at the instant 0 or T 
second later the output will not be affected and 
will be identical except for the time delay. 

 
For a system that accomplishes those 

properties it is sufficient a single function to de 
ne it. This function is the impulse response h(t). 
If h(t) is known, it is possible to find the 
response of the system y(t) to an input signal x(t) 
by the operation of convolution between x(t) 
and y(t). 

y(t) = ℎ(𝑡𝑡) ∗ 𝑥𝑥(𝑡𝑡) 

          
 
 
 
 
 
 
Figure 2.1: A system is any process that 

causes an output signal as a response of an input 
signal 

 
The same thing can be done in the frequency 

domain. The system will be characterized by the 
transfer function H(s) where s is a complex 
number. This is the Laplace transform of h(s). 
To get the output signal is sufficient to multiply 
the Laplace transform of the input signal X(s) 
by the transfer function H(s). 

Y(s) = H(s).X(s) 
If the complex variable s is i.ω the transform 

is a Fourier transform. Basically, the advantage 
in the frequency domain is that to find the 
response of the system instead of the operation 
of convolution that was used in time domain, 
multiplication is used, and of course it’s much 
easier to deal with multiplication. To go back in 
the time domain the inverse Fourier transform is 
used. 
2.2.2 Fourier analysis 

The Fourier analysis is the decomposition of a 
signal as a sum of sinusoidal waves with  
different frequency. 
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The Fourier analysis can be applied to 
continuous and discrete signals, both periodic 
and 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2: Fourier series of a square wave 
A periodic. In the present work the analyzed 

signals are periodic and discrete. Therefore, we 
will concentrate on it but it is useful to briefly 
introduce the continuous signals as well. 

Continuous periodical function can be 
expressed as Fourier series. 

f(t) = 1
2
 · ao + ∑ [an · cos(ωn. t)  +  bn · ∞ 

n=1 

sin(ωn · t)] 

Where ωn = n • 2 • π/T with (n = 0,1...) ω1  is 
the first harmonic and all the other harmonics 
are multiple integer of the first one. For each 
harmonic the knowledge of the coefficient an 
and bn make it possible to rebuild the original 
signal. 

 
For each harmonic the term is valid the 

expression 
an ·cos(ωn ·t) + bn ·sin(ωn ·t) = Cn ·cos(ωn ·t + 

𝜑𝜑n) 

For a given ωn the wave can be represented 
with a complex number that give information 
about the phase and the magnitude. By working 
in this way the result will be one complex 
number for each harmonic. It is possible to 
represent the module and the phase as a function 
of the frequency. For example in figure 2.3a it is 
represented the function 2. 
sin(x−0.5)+0.5•sin(3•x+0.2) and in figure 2.3b 
there is its representation, module and phase, in 
the frequency domain. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

(a) function                (b) frequency domain representation 
 

Figure 2.3: time domain and frequency domain representation 
 

2.2.3 Discrete Fourier transform 
The discrete Fourier transform (DFT) is the 

tool necessary to work with discrete periodical 
functions. DFT is a transform that given a series 
of number, that usually are samples taken with a 
frequency fs from a continuous function, gives a 
series of complex coefficient that represents an 
approximation of the coefficient of the Fourier 
series of the continuous signal. The number of 
frequencies that can be analyzed is limited 
theoretically from the sampling frequency. It is 
not possible to go further than the Nyquist 
frequency that is fs=2 for the Nyquist theorem 

because otherwise the result signal will be 
affected by the aliasing phenomenon. 

2.3 Formulation of the problem 
The formulation that describes the conduction 

in non steady-state condition is the following 

ρ·cp · ∂x
∂y

 = k·∇2θ + 𝛗𝛗          (2.1)                                                         
it can be expressed also introducing 

diffusivity as 
 
𝜕𝜕𝜕𝜕  
∂t

= a·(𝜕𝜕2𝜃𝜃  
∂x2

+ ∂2θ
∂y2

) + φ
ρ·cp

         (2.2)                                                                                                                                                             
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Considering that diffusivity is a = k/(ρ•cp). 
 

It is not easy to find a solution of this equation 
in general conditions. In this section it will be 
presented a way to solve it in a bi-dimensional 
domain limiting the temperature variation at the 
boundary to harmonic functions and 
considering that there is no heat generation (𝛗𝛗 = 
0 ). The equation is linear, and therefore the 
variation of temperature inside the system will 
be an harmonic function with the same 
frequency as the harmonic waves imposed at 
the boundary. 
 

θ = (u + i·v)·eP

i·ω·t 

And introducing this in (2.2) 

i· ω· (u + i·v)· eP

i·ω·
Pt = a·(∇P

2
Pu + 

i·∇P

2
Pv)·eP

i·ω·t                                     
P(2.3) 

(i · ω · u )/𝑎𝑎 − (ω · v a)/a  = ∇P

2
Pu + i·∇P

2
Pv 

Simplifying the term ei•ω•t in (2.3) the equation 
is not time dependent anymore, and the problem 
is reduced to a steady state problem. Then, it is 
possible to solve separately the equation for the 
real part and for the imaginary part. Therefore, 
the problem will be a system of two differential 
equation with two unknown quantities that are 
the real and the imaginary part of the 
temperature.                                                            

�
∇2u =  −  ω·v 

𝑎𝑎

∇2v =  𝜔𝜔 .𝑢𝑢   
𝑎𝑎

 
�         (2.4) 

With this formulation the problem can be 
solved with a finite element code capable to 
couple two differential equations. The solution 
of the problem will be the field of the real part 
and the imaginary part of the temperature. This 
means that for each point of the field it is 
known the magnitude and the phase of the 
sinusoidal wave that represents the temperature. 
These sinusoidal waves, as said before, have the 
same frequency as the sinusoidal variation of 
temperature imposed at the boundary. Therefore, 
for each point of the field, it is possible to 
rebuild a time domain solution. This bi-
dimensional formulation can be suitable in the 
analysis of the ground. In the chosen situation 

there is a pipe embedded in the ground. As long 
as with such a configuration the temperature 
gradient along the pipe axis is not that high 
compared with the one in radial direction we 
can do the assumption of radial heat transfer 
from the pipe to the ground. Under these 
conditions, the bi-dimensional formulation just 
showed is suitable for the description of the heat 
losses to the ground. 

 
2.4 Cross section study 
The cross section study consists in the 

quantitative evaluation of the heat flux that can 
be exchanged between embedded pipes and 
ground. In order to get a solution it is necessary 
to have a well defined finite element problem. 
This means imposing a formulation to de ne the 
problem inside the domain studied and at the 
boundaries. By doing that, the solution of the 
problem will be unique. For the domain 
formulation the problem has been defined in the 
previous sections. Regarding boundary 
conditions, they have to be defined being 
coherent with the physics of the problem 
therefore some consideration about the 
configuration and the consequent conditions 
that can be assumed have to be done. We can 
start by noticing that we are studying a 
serpentine, and instead of studying the whole 
cross section of the ground with all the loops, 
the best thing is to study just one pipe and 
consider thermal insulation on the lateral 
boundaries. This is a good approximation, in 
fact as said just before the magnitude of the 
temperature differences along the pipe in one 
loop is not very big, and that means that at a 
certain distance from the pipes there is no 
temperature gradient and therefore no heat ux. 
Moreover, the temperature at a depth of 6 
meters can be considered more or less constant, 
and equal to the average external temperature of 
the year. To simulate this condition, considering 
the fact that we are going to make the study in 
the frequency domain for equal to  the condition 
is constant temperature equal to the average 
external temperature during the whole year and 
for other frequencies is just thermal insulation. 
In figure 2.4 is showed the model used. 
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Figure 2.4: Model used 
 

The boundaries that are missing are the upper 
one, between the ground and the air that is on 
top       and the internal boundary, the internal 
circle that represent the pipe cross section. 
Therefore, the boundary condition on the upper 
side is related to the outside air temperature, 
and the internal one is related to the temperature 
of the air inside the pipe. The boundary 
condition chosen is always a Neumann 
condition that means that the external ambient 
temperature and the heat transfer coefficient are 
assigned and in this way information about heat 
transfer trough the boundary are given. 

q = h·(T
amb

 − T
boundary

) 

The outside temperature and the temperature 
along the pipe are actually the two variables that 
influence the heat transfer phenomenon in the 
study case. Therefore, those two variables can 
be seen as our input signals. 

Another aspect that plays an important role in 
the cross section analysis is the linearity of the 
problem. This is exploited in different ways: 
• Separations of the effects: The effect of 
the two input signals are studied separately and 
afterward the total result is found by 
superposition. 

 
• FFT: The input functions are just 

sampled continuous function. The whole                    
continuous function is not available. By using 
the Fast Fourier transform the transformation of 
the signals in the frequency domain is achieved. 
The finite element study can be done for each 
frequency separately, and the time depending 
problem is reduced to a finite number of steady 
state problems. 

• Usually, in a certain instant, the external 
temperature is constant along the all pipe, but 
the temperature inside the pipe is not constant at 
all. To have a general description of the heat 
flux trough the pipe boundary, independent 
from the magnitude of the temperature inside of 
it, the only way it is to use a unitary input signal 
for each frequency. Thanks to the linearity of 
the problem, the response to the unitary input 
signal multiplied by the Fourier coefficients 
gives as result the heat flux due to the real input 
signal. Moreover, that kind of approach is used 
for both the input signals, because thereby, the 
same configuration of the system can be studied 
under different conditions (different input 
signals), with just one finite element simulation. 
 
  Summarizing, for each frequency analyzed 
two simulations are run: one with Tout = ei•ω•t 
and Tx = 0 where Tout is the external 
temperature and Tx the temperature inside the 
pipe at a certain length x, and the other one with 
Tout = 0 and Tx = ei•ω•t From the FEM 
simulation, as a result, we can get temperature 
field, both real and imaginary part. By 
integrating the heat flux on the pipe boundary 
we get the heat flux per meter through the pipe 
at certain length x of it. In figure2.5 there is an 
example of such a kind of simulation for one 
harmonic. In the two upper figure there is a 
representation of the fields of real and 
imaginary part of the temperature when there is 
a wave of temperature with module one just 
inside the pipe, whereas the other two pictures 
are the same temperature fields but when the 
input wave is just outside the ground. From the 
integration of the heat flux field along the pipe 
boundary two parameters are founded. In the 
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following work these two parameter will be 
called E and F . E is the heat flux trough the 
pipe when the temperature inside the pipe is a 

sinusoidal wave with unitary module and the 
outdoor 

 
 
 
 
 
 
 
 
 
 

 
Figure 2.5: Example of the result of one simulation with these kind of conditions in this case for the 
6th harmonic 

 
Temperature is constant and equal to zero. F is 
the heat flux through the pipe when the outdoor 
temperature is a sinusoidal wave with unitary 
module and the temperature inside the pipe is 
zero. Both E and F are complex numbers. For a 
given ω with such parameters the calculation of 
the total flux can be done as it follows 
 

Q(ω) = Tin(ω)·E(ω) + Tout(ω)·F(ω) 

2.5 Analysis along the pipe 
Once that the parameters E and F are 

calculated we can make a heat balance in a 
control Volume as follows. 
          u·ρ·c·A·(Tx+dx −Tx) + i·ω·ρ·c·A·dx + 
dx·E ·Tx + dx·F ·Tout = 0          (2.5)

 

 

 

 

 

 

 

 

 

Figure 2.6: Heat balance in the control volume 
                                                      Tx+dx = Tx +

∂Tx
∂x 

 ·dx 

                          u·ρ·c·A·∂Tx  
∂x

+ i·ω·ρ·c·A·Tx + E ·Tx + F ·Tout = 0               (2.6) 

                                                       ∂Tx  
∂x

 =     −F ·Tout  
(i·ω·ρ·c·A + E)·Tx

    
The general integral is 
                                                    Tx(x) = C ·exp { −F ·Tout  

(i·ω·ρ·c·A + E) 
 ·x} + D 

By putting the initial condition Tx(0) = T0 it follows that 
 

C ·exp{ −F ·Tout  
(i·ω·ρ·c·A + E) 

. 0}+ D = C + D = T0 
 

i·ω·ρ·c·A·Tx(∞) + E ·Tx(∞) + F ·Tout = 0 
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Tx(∞) =(−F · Tout )/(i · ω · ρ · c · A +  E) = D 

 
C = T0 − (−F · Tout )/(i · ω · ρ · c · A +  E)  

 
By replacing the constants in the general Integral it follows the Analytical solution of the problem 

Tx(x) = (T0 + F ·Tout  
(i·ω·ρ·c·A + E) 

) · −F ·Tout  
e(i·ω·ρ·c·A + E) 

·x + −F ·Tout  
(i·ω·ρ·c·A + E) 

                           (2.7) 
By having an analytical solution of such a kind 
of problem it follows that the whole 
computational problem is getting the parameters 
E and F by Finite Element simulation, and once 
that those are known the temperature Tx can be 
calculated in a period of time that can be 
neglected. The analytical solution shown now 
permit therefore the calculation of the Fourier 
coefficient of the signal Tx. By having the 
frequency domain representation of the signal 
the time domain is calculated by Inverse Fast 
Fourier Transform. 
 
UTILIZATION OF MULTIPHYSIC 
3.1 Introduction 
Multiphysic is a Finite Element Method code. 
The program basically permits to solve 
Ordinary  
Differential equation and Partial differential 
Equation. It can perform either bi-dimensional 
or three-dimensional analysis. Moreover, it can 
also solve system of equations 
In this work Multiphysics has been used for the 
cross section study. The geometry is bi-

dimensional and the drawing of the geometry 
has been done with a CAD integrated in 
Multiphysic. The draw is a rectangular with a 
hole, as seen in the first chapter. Inside this 
domain will be calculated numerically the 
solution of equation 2.4. The domain is divided 
in two zones. They are called subdomains. In 
figure 3.1 is shown how the geometry looks like 
and it can be noticed the division in 
subdomains. 
For each subdomain different conditions can be 
set up. In this case the upper rectangle is the 
layer of insulation between the ground and the 
external ambient. The other subdomain is the 
remaining part and represents the ground. The 
equations solved are the same in both the 
subdomains. The differences are the material 
properties. Density, specific heat coefficient and 
conductivity are specified to distinguish the 
behavior of the insulation layer to the one of the 
ground. In figure 3.2 there is one example of 
how has been done the subdomain setting. The 
equations to solve are the following. 

 

� k · ∇2u =  −ρ · cp · ω · v
  k · ∇2v =  ρ · cp · ω · u   

�                     (3.1)

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 3.1: Geometry 
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This is a system of equations and in order to 
solve it, two Multiphysics models are necessary. 
One with u as independent variable and the 
other with v. They are real and imaginary part 
of the temperature for a given frequency T = u + 
i v. The program works in parallel and the two 
fields are found at the same time. Comsol 
Multiphysic is basically a PDE solver but inside 
the program there are different features that 
make it more user-friendly for a direct 
application to a specific field. The application 
mode chosen has been ’Heat transfer by 
conduction in steady state’. In this mode 

basically the equation solved in the subdomains 
is 

k·∇2u = Q 

Where Q is a heat source and T is the 
unknown quantity. The two Multiphysics 
models are set up in order to have u as unknown 
quantity in one of them and v in the other 

one. And, by setting the heat source term in 
the first case equal to cp - ρ•cp•ω•v and in the 
second case equal to cp ρ•cp•ω•u, the two fields 
are linked and the program will solve the both 
at the same time. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
Figure 3.2: Subdomain setting example 
 

3.2 Verification 
The problem of working with simulation tools 
like finite element codes is that is very easy to 
make mistakes and it is always very important 
to ensure the propriety of the results. Moreover, 
the results of one simulation at a given 
frequency are the fields of real and imaginary 
part, therefore the field of Fourier coefficient 
for that frequency. This result is not really 
suitable for interpretation because it’s abstract. 
A time domain representation gives us more 
information than it, even if the information 
contained in is the same. In order to understand 
if what we are doing is correct the best thing is 
to start from a very simple model and verify the 
numerical solution with an analytical one. 

 
 

3.2.1 Analytical solution 
The case chosen is heat conduction in a semi-
infinite slab making the hypothesis of no heat 
sources within the domain. The only input 
signal is at the boundary and it is a sinusoidal 
wave at frequency ω. The temperature inside 
the slab varies in time and along the x 
coordinate. The equation that describes the 
phenomenon is the Fourier law 

δT(x,t) 
δt

 = a. δ2T(x,t) 
 δx2

 

Utilizing always the same strategy and using 
harmonic function as input signals at the 
boundary the equation can be reduced from 
PDE to ODE. The input signal is an harmonic 
function with frequency ω, therefore in all the 
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points of the domain the solution will have the 
following form 
   T(x,t) = TAmp ·ei·(ω·t+φ) = (u + 
i·v)·ei·(ω·t) = T(x)·ei·(ω·t) 

The first derivative of an harmonic function 
is the initial function multiplied by i·ω 

δT(x,t) 
δt

= i·ω·T(x,t) 

Replacing this term in equation 3.2 
i·ω·T(x,t) = a· δ2T(x,t) 

 δx2
           (3.3) 

As done in chapter 2 simplifying the 
exponential term we can make the equation 
dependent just on the variable x. 

i·ω·T(x)·ei·ω·t = a· δ2T(x,t) 
 δx2

 · ei·ω·t 

δ2T(x) 
 δx2

 −i·ω·T(x) 
𝑎𝑎

  = 0                 (3.4) 
This equation is an ordinary differential 
equation in the variable x. The solution is in 
the form of T = eλ·x. It follows that 

eλ·x ·(λ2 −i·ω 
𝑎𝑎

) = 0 
The term c = −i·ω a is a constant complex 

quantity. The equation can be rewritten in this 
way 

eλ·x ·(λ2 + c) = 0 ⇒ λ = ±i·√c 
±√c = ±(1−i)·√ ω 

2.  𝑎𝑎
 

In such a case the general integral of the 
deferential equation has the following form 

                                                
T = C1 · cos ((1−i) · √ ω 

2.  𝑎𝑎
·x)+ C2 ·sin((−1 + i)· √ ω 

2.  𝑎𝑎
 ·x) 

T = C1 ·cos ((1−i) ·√ ω 
2.  𝑎𝑎

·x) − C2 · sin ((1−i) · √ ω 
2.  𝑎𝑎

·x) 
Sinusoidal functions with a complex argument can be transformed to exponential function 
With complex argument by using the Euler formula 

ei·ωx = cosx + i·sinx 
 
Therefore, we can link a sinusoidal function with a complex argument to an exponential 
functions, and therefore to hyperbolic functions. In our case the relations in which we are  
interested, are the following 

cos(x) = cosh(ix) 
 

sin(x) = −i·sinh(ix) 
 

T(x) = C1 ·cosh((1 + i)· √  (ω )/(2.  𝑎𝑎) ·x)+ C2 ·i·sinh((1 + i)·√ (ω )/(2.  𝑎𝑎)·x) 
To find the constant of the general integral, we have to put the necessary boundary con-ditions on 
the problem. For x = 0 the initial condition is T (0) = T0. Because of the properties of hyperbolic 
functions sinh(0) = 0 and cosh(0) = 1. It follows 

T(0) = C1 ·cosh(0) + C2 ·i·sinh(0) = C1 
Applying the fourier law 

q(0) = −λ·(𝛿𝛿𝛿𝛿  
𝛿𝛿𝛿𝛿

)x=0 = −λ·C2·i·(1+i)· √ 𝜔𝜔  
2·𝑎𝑎

·sinh((1 + i)· √ 𝜔𝜔  
2·𝑎𝑎

·0)+···sinh(0) 
Therefore                          

C2 = −𝑞𝑞0 
𝜆𝜆·𝑖𝑖·(𝑖𝑖 + 1)·√ 𝜔𝜔  

2·𝑎𝑎
 

Now it is possible to express the temperature of the slab as function of the temperature and the 
heat flux on the surface 

T(x) = T0 ·cosh((1 + i)· √ 𝜔𝜔  
2·𝑎𝑎

 ·x)− q0.
𝑖𝑖·sinh ⁡((1 + 𝑖𝑖)·√ 𝜔𝜔  

2·𝑎𝑎 .𝑥𝑥  

 𝜆𝜆·𝑖𝑖·(𝑖𝑖 + 1)·√ 𝜔𝜔  
2·𝑎𝑎  

                                  (3.5) 

In the case of semi in finite body, for  x →∞, T(x) → 0. In such a condition 

                             q0 =  
𝜆𝜆(𝑖𝑖 + 1)·cosh ⁡((1 + 𝑖𝑖)·√ 𝜔𝜔  

2·𝑎𝑎 .𝑥𝑥)  

sinh ⁡((1 + 𝑖𝑖)·√ 𝜔𝜔  
2·𝑎𝑎 .𝑥𝑥)

 

Additionally for  x →∞, sinh(x) → cosh(x).). Then the expression for the heat ux at the surface 
become 
q0 = λ·(i + 1)· √ 𝜔𝜔  

2·𝑎𝑎
. 𝑥𝑥 

Replacing this term in equation 3.5 
T(x) = T0 ·{cosh((1 + i)· √ 𝜔𝜔  

2·𝑎𝑎
. 𝑥𝑥 ) – sinh((1 + i)· √ 𝜔𝜔  

2·𝑎𝑎
. 𝑥𝑥 )} 
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⇒ T(x) = T0 ·e(1+i)· √  (𝜔𝜔 )/(2 · 𝑎𝑎). 𝑥𝑥                                            (3.6) 

Equation 3.6 is the analytical solution for of the present study case. That result will be used to 
control the numerical solution in order to understand if the problem has been set up in the correct 
way. 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 3.3: Slab analyzed 
 
3.3 Test Model 
To model a semi in nite slab we consider a 

big square with side of more than 30 m and we 
put a unitary sinusoidal wave at a given 
frequency on one side and thermal insulation on 
the other three sides. 

The scheme is the one in gure 3.3. In this case 
we are interested in the temperature along the x 
coordinate. In order to nd it, it can be used a 
postprocessing tool called cross section plot 

parameter. With that tool we get exactly the plot 
along a given straight line of the temperature. 

In gure 3.4 there is a description of how it 
works. On the left, there is the 2D surface plot 
and a red line that represent our cross line. And 
on the right, there is the plot of the parameter 
along the red straight line. That is basically the 
con guration used for the test. The equation 3.6 
can be written as follow to highlight real and 
imaginary part. 

T(x) = T0 ·e−√ 𝜔𝜔
 2·𝑎𝑎

·x ·[cos(√ 𝜔𝜔
 2·𝑎𝑎

 ·x)−i·sin(√ 𝜔𝜔
 2·𝑎𝑎

 ·x)]                                               (3.7) 

 
  
 
 
 
 
 
 
 
 
 
 
 

Figure 3.4: Plot section parameter 
 

By using COMSOL we can plot functions. In gure 3.5 there is the plot of real part, imaginary part 
and of the module of the function described by equation 3.7. 
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Figure 3.5: Plotting of the analytical solution 
To test the numerical solution we can plot in 

the same graph the numerical and the an-
alytical solution. By doing this test, we can see 
from gure 3.6 that they are very close. The test 
has been done both for the real and for 
imaginary part. 
 

3.4 Utilization of Comsol script 
The package Comsol includes Comsol 
Multiphysics and Comsol Script. The rst as seen 
before is a software with graphical interface for 
nite element simulations; the latter is an 
environment where it is possible to run scripts. 
The two programs are interfaced each other. 
The simulation in Multiphyscs can be saved 
in ’.mph’ format or in ’.m format’. If a 
simulation is saved in the ’.m’ format it can be 

run with Comsol Script. This le can be open 
from a text editor. Inside of it there will be the 
code that contains the whole information 
regarding settings of the simulation (geometry, 
boundary condition, postprocesing parametr 
ecc.). Therefore, the set up of the problem can 
be done directly in the code, and then run the 
program from Comsol Script [14]. That kind of 
approach can be very e ective in our case 
because the harmonic analysis consists in di 
erent simulation where just the frequency is 
changing and it is su cient a simple loop to run 
the whole simulation. In the following example 
there is a typical script used to manage di erent 
simulation at di erent frequencies. The 
simulation permit to calculate E and F for all 
the frequency in witch we are interested in. 

%Calculation of E and F coefficient 

omega = 0; 
 
serpentine; %serpentine.m is the file imported from 

 
E(1) = I1+i*I2;                                                                       %Comsol Multiphyisic of the FEM simulation 

 
F(1) = I3+i*I4; 

 
omega = 2*pi/(365*24*3600); 

 
for k=1:6 

serpentine; 
E(k+1) = I1+i*I2; 
F(k+1) = I3+i*I4; 
omega = omega*(k+1) 

end 



 
INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR) 

 
ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-3, 2019 

211 

dlmwrite(’E.txt’,E,’ ’); 
dlmwrite(’F.txt’,F,’ ’); 
E; 
F; 

This is just an example of application that 
can be useful for the resolution of this kind of 
problem, but a lot of possibility are o ered by 

this program. Both Comsol Multiphysics and 
Script have been necessary for the realization 
of the present work. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.6: comparisons between analytical and numerical solution 

 
REALIZATION OF THE CALCULATION 
TOOL 
4.1 Application 
The result of the theory explained in the 
previous chapter is a computer program to 
make simulation of the ground storage. The 
program works with average monthly 
temperature and constant velocity. Its aim is to 
make a previous study to see the behavior of 
the system. The program is based on di erent 
scripts. Basically, the sequence of operations is 
the same that has been explained before. 
Therefore, there is a rst group of scripts to 
calculate the parameters E and F, and after a 
second one to calculate the temperatures along 
the pipe during the year. In the next sections 
will be explained with examples some features 
and setting of the program. 
4.2 Parameter setting 
4.2.1 Geometrical parameters 
The first step is the geometry and mesh 
setting. Those are performed by changing the 

values of some parameters in the le 
’parametergeometry.m’. The parameters that 
can be controlled are for instance the position 
of the pipe in the ground, the diameter of the 
pipe, the width of the insulation etc. Moreover 
is very important to adapt the mesh to the 
geometry chosen, therefore to remesh in the 
critical position that are basically the 
insulation and the zone that sorrounds the 
pipe. This operation is very important because 
the precision of the E and F depends on it. The 
geometrical parameters setting can be checked 
by using the function ’checkgeometry’. This 
function performs the plotting of the domain 
and of the mesh. In gure 4.1 there is an 
example of utilization of this function in three 
di erent case. In the three cases has been 
varied the position of the pipe in the ground 
and consequently the remeshing that surround 
it 
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Figure 4.1: Result of the function ’checkgeometry’ for three di erent setting 

4.2.2 Materials properties 
The second step is setting the material 
properties. As said before there are two 
subdomains that correspond to the insulation 
and to the ground. The properties that have to 
be set up are the thermal conductivity , the 
density and the speci c heat coe cient cp. A 
typical setting can be 
 

• For the insulation 
 
– λ = 0.0036 W/(mK) 
            – ρ = 30 m3/kg 
            – cp = 1000 J/(kgK) 

 
• For the ground 

 
– λ = 1.6 W/(mK) 
– ρ = 1800 m3/kg) 

            – cp = 1000 J/(kgK 
 
changing the values of the properties there is the 
possibility of analysing di erent kind of 
insulation or di erent kind of ground. 
4.3 Cross section study 
The cross section study consist on the 
determination of the parameters E and F for 
each frequency. The input data are the average 
monthly temperatures at the beginning of the 
pipe and outdoor temperatures. This means 
that 12 samples of those function are known 

and the period is one year. As seen previously, 
the operation that has to be performed is to get 
the input signals, to utilise the frequency 
domain representation and to study the 
system. In our case we don’t have a 
continuous function as input but just a nite 
number of samples. The Shannon-Nyquist 
theorem provides a condition under witch the 
perfect reconstruction of the signal is possible. 
The sampling frequency must be more than 
twice than the maximum frequency contained 
in the signal.The period is one year. The rst 
harmonic has a frequency of f1 = 1/T = 
1/(365·24·3600)The sampling frequency is fs 
= 1/(12·365·24·3600).The band limit is twice 
the sampling frequency that correspond to the 
sixth harmonic. To have a perfect 
reconstruction of the periodical signal in the 
case of twelve samples we have to go till the 
sixth harmonic. Therefore E and F will be 
calculated till the sixth harmonic. The 
calculation of E and F is performed with a 
postprocessing operation, that is the 
integration of the heat ux along the border of 
the pipe, after the determination of the 
temperature elds.In gures 4.2, 4.3, 4.4, 4.5, 
4.6, 4.7, 4.8 there is the result of a whole 
simulation: all the elds of temperature 
necessary to determine the parameters E and F 
for each harmonic. 
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Figure 4.2: Field of temperatures costant part 

4.4 Study along the pipe 
Once that the parameters E and F are 
determined the temperature at a given length of 
the pipe is found by using equation 2.7. In this 
way we nd the frequency domain 
representation of the signal and after by 
Inverse Fast Fourier Transform we can get the 
correspondent time domain one. In gure 4.10 
there is a plot of a typical result obtained with 
the program. On the left has been plot the con 

guration studied and, on the right, the 
temperatures that are object of study: the 
temperature on the top of the ground(green 
line), the temperature at the beginning of the 
pipe(blue line) and the temperature after at a 
given length(red line). The program has been 
developed to study the behavior of a serpentine 
in the ground. 
 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Fields of temperature  rst harmonic 
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            Figure 4.4: Fields of temperature second harmonic 

 

 

 

 

 

 

 

 

Figure 4.5: Fields of temperature third harmonic 

              

 

              

 

 

 

 

 

 

                  Figure 4.6: Fields of temperature fourth harmonic 
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Figure 4.7: Fields of temperature  fth harmonic 

 

               

 

 

 

 

 

 

                        Figure 4.8: Fields of temperature sixth harmonic 

 

 

 

 

 

 

 

 

 

Figure 4.9: Fields of temperature sixth harmonic 
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The applications are di erent, but the study case 
to investigate is an airborne solar collector to 
heat the ground and store this heat for the 
winter. To simulate this situation at rst the 
incoming temperature has been approximated 
with a correlation between the month mean 
outside temperature and the monthly mean 
Irradiation. For an initial test, the solar collector 
won’t be simulated. The objective is utilize 

some reasonable data for the inlet temperature 
to the system. The relation used for the input 
temperature to the system is the following. 
tin = tout + 0.07·I 
 
From the result of the simulation we can see the 
e ect of the inertia of the ground the wave of 
temperature after passing through the system is 
reduced in module and shift in phase 

 
           

 

 

 

 

 

 

  

 

Figure 4.10: Typical result of a simulation 

4.5 Example 
In this section will be test the program to see 
the e ect of the di erent parameters on the 
system. The target is to increase the 
temperature at the end of the pipe in winter 
when heat is needed. Di erent situation will be 
analyzed in order to understand the best set up 
for the system. 
 
4.5.1 Base case 

• Geometrical features 
– thickness of the insulation: 0.2 m 
– diameter pipe: 0.4 m 
– depth of the pipe: 1 m 
 
• Material feature 
– λground = 1.6 W/(mK) 
– ρground = 1800 m3/kg 

– cpground = 1000 J/(kgK) 
– λinsulation = 0.0036 W/(mK) 
– ρinsulation = 30 m3/kg 
– cpinsulation = 1000 J/(kgK) 
• Input temperatures  
– temperature of the air coming into the system: 
tin = tout + 0.07·I  
– temperature on top of the insulation: outdoor 
temperature of Stockholm tout 
• working fluid: air 
– ρ = 1.2 m3/kg 
– cp = 1000 J/(kgK) 
And of course, the program can be run for 
different pipe length. The configuration and the 
result for a pipe length of 60 m is the on in 
figure 4.10. 
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Figure 4.11: test with di erent length 

4.5.2 Pipe length 
By using the con guration that has been 
presented now we can see what happened by 
changing the pipe length. Figure ?? shows the 
result of the calculation for a 20, 40, 60, and an 
80 m pipe. 
The longer is the the pipe the more is effective 
the system. The ground works like an heat 
exchanger with a kind of storage due to 
thermal capacity of the soil. A high air 
temperature can be reached by using an air 
solar collector; The inlet air in summer will be 
at higher temperature compared with the 
outdoor temperature, therefore the air entering 
the pipe buried will exchange some heat with 
the surrounding ground and will warm it up. 
The opposite situation will happen in winter: 
the outside temperature will be very low and 
by passing trough the system will increase its 
temperature. From this simulation with an 

average outside temperature of 5 C in winter 
with a this con guration is possible to reach a 
condition of almost 5 C with a temperature di 
erence of more or less 9 10 C. 
 
4.5.3 Insulation thickness 
Keeping 80 meters length and varying just the 
insulation thickness we can make a compar-
ison to see how this feature characterizes the 
behaviour of the system. The picture in gure 
4.12 shows the results obtained from a test 
done for insulation thickness of 0 cm, 5 cm, 
10 cm and 15 cm. From the result we can see 
that by using insulation there is a certain gain 
on the temperature at the end of the pipe in 
winter. The results of the simulation proof 
also that an insulation of 15 cm is e ective and 
that by adding extra insulation there is not that 
much gain. The 15 20 cm of insulation is 
enough for this kind of system. 

  
 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 4.12: Test of the system with di erent insulation thickness 
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4.5.4   Position of the duct 
The e ect obtained by changing the pipe depth 
shows that there is a little gain if the pipe is at 
2 m depth, and it seems that is not worthy to 
put it at 3 m of depth cause there is no more 
gain. The simulation has been done for the 
three situation in gure 4.1 for 1, 2, and 
3 m. 

 
 

4.5.5   Pipe diameter 
To compare what happened by changing the 
diameter of the pipe we consider constant air 
ow and constant heat exchange surface. By 
keeping the heat exchange surface constant 
the pipe material will be more or less constant 
and it will also be possible a comparison on 
the heat exchange performances. Case 1 has 
the following characteristics: 

 

  

 

 

 

 

 

Figure 4.13: Test of the system for di erent pipe depth 

Case 1 

  

Length 80 m 

Diameter 0.4 m 

Velocity 1 m/s 

  

volume flow 0.1256 m3/s 

heat exchange surface 100.53 m2 

 
The volume ow and the heat exchange 

surface have respectively the following 
expression: 

            ˙ V = ui ·𝜋𝜋 ·𝑑𝑑2 𝑖𝑖 
4

= cost 
Aexc = π·di ·li = cost 

 
 

 
By using these formulas we can change the 
diameter and nd the correspondent values for 
the length and the velocity that satisfy the 
condition of constant volume ow and con-
stant heat exchange surface. Using these 
procedure we found the data of the following 
table 
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Figure 4.14: Test of the system for di erent pipe diameters 

Case 1 2 3 

    

Diameter 0.4 m 0.3 m 0.5 m 

Length 80 m 106.66 m 64 m 

Velocity 1 m/s 1.77 m/s 0.64 m/s 

    

volume flow 0.1256 m3/s 0.1256 m3/s 0.1256 m3/s 

heat exchange surface 100.53 m2 100.53 m2 100.53 m2 

In gure 4.14 there is the result obtained by 
using these data of pipe length and air velocity. 
The cases analyzed are pipe diameters of 0.3, 
0.4 and 0.5 meters. From the results we can 
notice that by increasing the diameter there is a 
decreasing of the heat transfer performance. 
This is due to the fact that the velocity will be 
higher for the smaller pipe with a higher heat 
transfer coe cient as a consequence. On the 
other hand, to size the pipe diameter has to be 
taken into account the power that the fan has to 
supply . To reduce this power the pressure 
losses have to be taken into account. Those can 
be calculated by using the Darcy-Weisbach 
relation: 

 
∆p = L

D
 w2

2g
                                              (4.1) 

 

with L the length the duct, f loss coe cient, D 
the diameter of the duct, g gravity accel-eration 
and w velocity of the uid. The velocity in a 
duct can be express as follow: 
 

w = 4V
πD2

  
Therefore 
 

∆p = f 8LV  2 
g·π2D5

                                            (4.2) 
 
The expression shows that with a small duct 
we have a high pressure drop since that is 
inversely proportional to the fifth power of the 
diameter. Then, in this case it’s better to size 
larger pipes because the power that has to be 
supplied by the fan is electrical power with a 
high energy content, and what we want to take 
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out from the system is low temperature heat 
with a low energy content. The quotient 
between the energy from the fan and the 
energy that we will manage to take out from 
the system has to be very low. 

NONLINEAR FORMULATION 
5.1  Problems 
In the previous chapters all the analysis have 
been done thinking about average monthly 
temperatures and constant velocity in the pipe. 
This kind of analysis gives us the idea of the 
behavior of the system. The next step is to 
perform a deeper analysis that makes it 
possible to work with daily temperature 
variation and that permits to variate the air 
velocity inside the pipe. The regulation has a 
very important role to understand the real 
performance of the system. For example during 
summer the temperature during day time is 
greater than the ground temperature but during 
the night it can be less than it; therefore, if the 
air velocity is constant, during the day we will 
be heating the ground and during the night we 
will be cooling down it. For this new problem 
the idea is to try to use the same approach used 
for the previous work and then, at first a cross 
section analysis to obtain the system 
parameters to get the transfer function from a 
finite element analysis and after a finite 
difference analysis along the pipe to see the 
evolution of the temperature pro le with the 
increasing of the length of the pipe. The hardest 
issue is that the introduction of variable 
velocity, as it will be explained afterward, 
means to solve a system of nonlinear equation 
of large dimension. To solve it will be used 
The GMRES (General Minimal Residual) 
Method that permits to decrease the time if 
compared with the Newton-Raphson method. 
5.2  New formulation 

To solve the problem in the new conditions, 
the FEM analysis to calculate system 
parameter has to be performed in a slightly di 
erent way compared with the one used in the 
rst program. In that case, it was chosen for the 
system study to use as input signals the outside 
temperature T out and the temperature inside 
the pipe Tx, and then it was assigned the value 
of the global heat transfer coefficient h 
depending on the velocity chosen. In this case, 
it is not possible to assign this kind of 
conditions because to make the frequency 
domain analysis, it is important to keep on the 
system linear. The aim is to find a formulation 

that permits us to find a solution of the 
problem in a similar way compared to the one 
used in the first program. Then, it is very 
important to use the linear analysis of the cross 
section. The problem introduced by using 
variable velocity is that the heat transfer 
coefficient h is not constant anymore. What 
can be done is to assign a temperature to the 
pipe surface and verify that the heat transfer 
between the working uid and the pipe surface 
is the same as the heat transfer between the 
pipe surface and the ground. Ones that is 
known the surface temperature the calculation 
of the heat transfer between the surface and the 
ground is a linear problem. By supposing the 
surface temperature more or less 
homogeneous, we can de ne two new 
parameters E and F in the same way as it has 
been done in the previous program with the 
only difference that this time for the definition 
of E the temperature oscillation is directly 
imposed on the border of the pipe. Then, the 
pipe can be divided in a finite number of 
element in which the temperature of the 
surface Ts(t) is supposed to be function of the 
time but not of the space. If it is known the 
pipe surface temperature T s(t) in one of these 
elements, then its Fourier series coefficient 
Ts(ω) is known, and the heat flux tilde 
Q(ω)can be calculated. Afterward through 
inverse Fourier transform the time domain 
representation q1(t) can be calculated. 

Q˜ (ω) = E∗(ω)· T˜ s(ω) + F∗(ω)·T˜ out(ω)  
     (5.1) 

The heat flux can be expressed also as 
 

q2(t) = h(t)·(Tx(t)−Ts(t))                                     
      (5.2) 

The solution of the problem is to find T s(t) that 
satisfy the relation 
 q1(t) = q2(t)                           (5.3) 

 
When the temperature of the surface Ts(t) is 
known in the element, we need one relation to 
link the temperature inside the pipe to the next 
element. From the heat balance we have that 

 
h(t)·(Tx(t) − Ts(t)) + ∂Tx (t) 

∂x 
 ·ρ·cp·u·A = 0 

And then 
 

∂Tx (t) 
∂x 

  = h(t)·(Tx (t)−Ts (t)) 
ρ·cp ·u·A

− 
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By knowing the derivative ∂tx(t)/∂x we find the 
new value Tx+1(t)  
 

Tx+1(t) = Tx(t) + (∂Tx(t) )/(∂x ) ·Tx(t) 
 

This kind of approach works only if the 
velocity u is not zero. Later on an approach to 
solve the problem even in this last case will be 
presented. In our problem the input signals are 
discrete and therefore the output signal will be 
a discrete function Ts(t) with the same number 
of samples as the input signals. The solution 
of the problem is the discrete signal Ts(t) that 
satisfies the equation 5.3 for each sample ts(t). 
Basically this is the way followed even if 
there are some other things that will be 
explained later on. 

 
5.3  GMRES 
Practically, given the temperature Tx(t) to find 
Ts(t), it is necessary to solve a nonlinear 
system of n equations in n unknown quantities 
where n is the number of samples t = 1,2,…… 
n. A method to solve nonlinear problems is the 
Newton-Raphson iteration. 

F (x) = 0 
F(x) = F(x0) + ∂F(x0) 

∂x
 · ∂x 

 
∂x =− F(x0) 

∂F(x0) 
∂x

  

 
If F(x) = f1(x),f2(x),··· ,fn(x) and x = x1,x2,... xn 
then the term (∂F(x0) )/ ∂x is the  
 
Jacobian J 
J = ( ∂f1(x0) /∂x1        ∂f1(x0)/∂x2    ···   
∂f1(x0) /∂xn 

              
         ∂f2(x0) /∂x1               ∂f2(x0) ∂x2          ···      
∂f2(x0) ∂xn 
 
                 …                            . . .                 . . .               
... . . . 
         ∂fn(x0) ∂x1                 ∂fn(x0) ∂x2          ···       
∂fn(x0) ∂xn )  (5.4) 
 
Therefore 

∂x1 = −f1(x0) /(∂f1(x0) / ∂x1)+ f2(x0)/( 
∂f1(x0)/ ∂x2)+···+f1(x0) /(∂f1(x0)/ ∂xn) 

 

∂x2 = −f2(x0) /(∂f2(x0) /∂x2)+f2(x0) /(∂f2(x0)/ 
∂x2)+···+f2(x0)/( ∂f2(x0)/ ∂xn) 
 

And so on till ∂xn. This method permits to get 
quadratic convergence, if the initial guess x0 is 
quite close to the solution and the system does 
not diverge. The problem of this method is that 
for each iteration it is necessary to calculate the 
Jacobian Matrix and if the system to solve is 
very large, it takes a long time to calculate it 
and that makes it impossible to find the 
solution in a reasonable time. The method that 
will be used to solve that kind of problem is the 
GMRES General minimal residual Method for 
nonlinear system. This is a Newton-Krilov 
method and mixes the Krilov method for the 
solution of linear system with the Newton 
Iteration. That is done solving the linear system 
of the Newton iteration with the GMRES 
method for linear system [16, 17, 18]. Given an 
initial guess x0 we have to find the that fulfills 
the relation 
J ·δ = −F(x0)                                       (5.5) 
 
If δ0  is an initial guess for the true solution, 
then letting δ = δ0 + z we have an equivalent 
system 
J ·z = r0                                              (5.6) 
 

where r0 = −F −J ·δ0. Let Km be the Krilov 
subspace 
Km = span {r0,J ·r0,··· ,r0 ·Jm−1} 
The iteration is 
  δm = δ0 + zm                                  (5.7) 
 
where zm ∈ Km such that (r0 −J ·zm)⊥K (that 
is equivalent to (−F −J ·δm)⊥Km). In other 
words we are looking for the δm that 
minimizes the ‖F + J ·δm‖; that δm is the 
orthogonal projection of in the Krilov 
subspace of dimension m. 
 
 
 
 
 
 
 
 
 

Figure 5.1: Orthogonal projection of in the 
Krilov subspace Km [19] 
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In this way we can decide a maximum 
dimension m of the Krilov subspace in which 
we are going to calculate the δm . As the value 
of m increase, decreases the value of δ−δm 
but increases the complexity of the problem at 
the same time, because we have to look for the 
minimum of the function ‖F + J ·δm‖ inside a 
bigger space. It results convenient to limit the 
dimension of the Krilov subspace and after 
one iteration calculate the new value of r and 
build on it a new Krilov subspace and do a 
new iteration. 
5.4  Algorithm 

              1. Start with an initial guess x0, a 
tolerance ϵ0, and mmax, the maximum dimension 
of  the Krilov subspace. 
              2. Arnoldi process: Build an 
orthonormal base of the Krilov subspace by the 
Gramd  Schimdt process. 

         • for an initial guess δ0, form r0 = 
−F(x0)−J(x0)·δ0 

• Compute β = ‖ro‖2 and v1 = r0/β 
  

              • for j = 1,2,··· ,m 
 
 – Form J ·vj and orthogonalized it to 
the previous v1,v2,··· ,vj  
  hi,j = (J ·vj,vi), i = 1,2,··· ,j 
     𝑢𝑢𝑢𝑢 + 1�  

= J ·v
j 

_∑ hi, j · vi𝑗𝑗
𝑖𝑖=1

 

                    vj+1 =‖ vj+1 =hj+1;j 
– Compute the residual norm j 

= ‖F + J j‖ of the solution 
deltaj that would be obtained 
if we stopped at this step. 

 
–  if ρj ≤ ϵ or m > mmax go to the 

next step 
3. Form the approximate solution: Define 

Hm to be the Hessemberg matrix  
(m+1)×m whose nonzero entries are the 
coefficients hi,j, 1 ≤ i ≤ j, 1 ≤ j ≤ m and 
de ne Vm = [v1,v2,··· ,vn]. 

Find the vector ym that solves the 
linear system ‖β ·e1 −Hm ·y‖  over 
all vectors in Rm where e1 = 
[1,0,··· ,0]T. 

           Compute δm = δ0 + zm where zm = Vm 
·ym, and xn+1 = xn + δm. 

4. if xn+1 is a good enough approximation 
to a root then stop, else restart the 
process with x0 = xn. 

Steps 2 and 3 are the core of the Alghorithm; 
first there is the Arnoldi process to create an 

orthonormal base of the Krilov subspace and 
the calculation of the vector z that minimize 
the ‖F + J ·δm‖2. In step 2 the exit condition is 
j > m or rj < tolerance. The last one implies 
that we have to calculate rj for each iteration 
as the dimension of the Krilov subspace is 
growing. As seen ‖r‖ = ‖Fj + δ‖, then to get it 
for each iteration it is necessary to solve the 
problem of minimization that is the problem 
of step 3. This, at a rst glance can look like a 
very expensive process, but due to the features 
of the matrix that are involved it results simpli 
ed. 

 
Before going forward let’s describe more in 
detail what we are doing in step 3. The 
minimization of the residual norm inside the 
Krilov subspace is obtained by imposition of 
the orthogonality between the the vector r and 
the the Krilov subspace 

minδ∈δ(0)+Km ‖Fj + δ‖2 = minz∈Km ‖r(0) −J 
·z‖2 
Finding the minimum of these expression 
means to solve the system of equation 

 
‖ r(0) −J ·z ‖2 = 0 with z ∈ Km 

 
The condition z 2 Km is obtained by building 
the vector as a linear combination of the basis 
vector of the Krilov subspace. The matrix Vm 
= [v1, v2,...vm] has as columns the vector basis, 
then we can say that a vector z obtained as it 
follows is inside the Krilov subspace. 

z = Vm ·y with y ∈ Rm 
Therefore 

‖r(0) −J ·z‖ 2 = ‖β ·v1 −J ·Vm ·y‖2 

J ·Vm = Vm ·Hm + vm + 1 �  ·eT m 
where eT m = [0,··· ,1]T ∈ Rm. And this can be 
rewritten as 

 
J ·Vm = Vm+1 ·Ĥm              

Now by substituting this one we obtain 
 

‖Vm+1 ·(β ·e1 − Hm ·y)‖2 = 0 
That is equivalent to 
 
‖(β ·e1 − Hm ·y)‖2 = 0              (5.8)                                                                 
The problem of minimization is reduced to the 
solution of a linear system. As previously said, 
to get the exit condition ‖r‖> toll we should 
calculate r while the Krilov subspace is 
growing (j = 1,2,m), then we should solve the 
system 5.8 for each iteration. This is an 
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((m+1)×m) system and is overdetermined. 
Such a kind of problem is called least squares 
problem. To solve it e ciently taking into 
account that the matrix Hj is orthonormal we 
can use the QR decomposition and the Givens 
rotation. Using this tools we can reuse much 
information from the step j 1 and save a lot of 
time. 
5.4.1 QR decomposition 
The QR decomposition is the factorization of 
a matrix A into an orthogonal matrix Q and an 
upper triangular matrix R. The method that 
will be used is the Givens rotation. It consists 
in multiplying the matrix A times rotations 
matrix Gj in order to zero the lowest and left 
elements and obtain the R matrix. For each 
rotation we will have one element that 
becomes zero. The final result will be G1 
×···×Gj ×A = R Let’s consider a matrix A and 
we want to find the matrix Q and R 

A = QR             (5.9) 
Am,n =  (  a1,1      a1,2         ···        a1,n 
                       

                            

                        a2,1       a2,2         ···       a2,n 
 
                  
                . . .     . . .    . . .        . . . 
 
               
                am,1   am,2        . . .         am,n   )  
 (5.10) 
The rotation matrix Gi,k,θ 
 
 
 
 
Gi,k,θ = ( 1    …    0         …     0         …    0 
        
              …  …   …        …     …       …   …. 
 
               0   ···   cos(θ    ···   sin(θ)   ···     0 
  
              . .    . .     . .        ..      . .         . .   . .  
 
              0     ···  −sin(θ) ···    cos(θ)   ···   0 
 
              . .     . .    . .        . .      . .        ..     . .  
 
                
               0     ···    0        ···      0        ···   1  )           
(5.11) 

gi,i = cos(θ) 
gi,k = sin(θ) 

gk,i = −sin(θ) 
gk,k = cos(θ) 

When a Given rotation matrix Gi,k,θ is 
multiplied times another matrix only the rows i 
and k are affected. 
  � cos (θ)   sin (θ)     

−sin (θ)   cos (θ)    �  � ai ,i
   ak ,i        � = � ri ,i 

   0        � (5.12)           
The angle that gives this result is 
r =√a2 i,i + a2k,i  

 
cos(θ) = ai,i/ri,i 
 
sin(θ) = ak,i/ri,i 
 
tan(θ) = ai,i/ak,i 
                                                     
The expression used to nd the rotation that 
have to be applied in order to zero the element 
ri;i is the last one. For each Givens rotation 
one element will be zero, then is necessary to 
apply more rotations to get the upper 
triangular matrix R. In the present condition, 
at step j, we want to calculate the matrix QJ 
and Rj. If we look at how has been built the Hj 
matrix, we can see that there is just one 
diagonal that has to be zero because the other 
elements that should be zero by Givens 
rotation are already zero. That means that for 
each step j, it is necessary just one Givens 
rotation to gain the decomposition. Let’s 
indicate with Gj(k) the matrix in step j that 
eliminates hj+1,j, then Qj = Gj(1)T 
×···×Gj(j)T. As a result coming back to the 
problem of equation 5.8 

‖(β ·e1 − Hj ·y)‖2 = ‖(β ·e1 −Qj �Rj  
0 �·y)‖2                                                                                           

(5.13) 
�Rj  

0 �·y = QT j β ·e1 = Gj(1)×···×Gj(j)β ·e1                                                        
(5.14) 

� gj  
ρj+10� = QT j β ·e1                         (5.15) 

Then gathering information from equation 5.14 
and 5.15 we obtain 
�Rj  

0 �·y = � gj  
ρj+10�     (5.16) 

The least square problem has been simplified to 
the solution of the linear system of equation Rj 
·y = gj and residual norm ‖rj‖ is 

‖rj‖ = |ρj+1| 
This result is very good because we can 
manage to get the residual norm without 
calculating directly the function. Therefore, it 
is possible to decide to iterate or not saving a 
lot of computational time. The Rj matrix is 
update column wise step by step. In order to 
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do that all the sines and cosines from the 
Givens matrix have to be stored. However gj 
can be easily updated from one step to the 
other by using the following expression 

ρ1 = ‖r0‖ 
 
ρj = −ρj−1 ·sin(θj) 
  
g0 =  Ø 
 
 gj =((gj − 1 )¦(ρj · cos(θj) ))  
 
5.4.2 Advantages of GMRES 
The advantage of this method is basically that 
the Jacobian J is never explicitly necessary but 
we have to calculate the product of the 
Jacobian times a vector. This can be 
approximated as follow 

J(x)·v =  F(x + σ·v)−F(x) 
σ

 
 

Instead of calculating each iteration (n×n) 
elements, are necessary only two matrix: the 
Hessemberg matrix H (m + 1×m) and the 
matrix with the basis vector V (n×m). And it 
is easy to understand that keeping low the 
number of mmax, the number of elements that 
should be calculated is reduced a lot. 

 
5.4.3 Line search method 
Newton method by itself can fail if the initial 
guess is far away from the solution. To 
increase the robustness of the GMRES a 
strategy to obtain global convergence will be 
used. The method explained in this chapter 
combines the Newton iteration with the 
GMRES method for the solution of linear 
system. During one iteration, once the linear 
system J ·δ = −F has been solved by using the 
GMRES, the following step is to update the 
value xk+1 = xk + δk. The term k represent the 
step between the points xk and xk+1, in the n 
dimensions space. By using the line search 
method we can ensure that xk+1 will be nearer 
to the solution of the nonlinear system 
compared to the point xk. The line search 
method is based on the definition of an 
objective function as follow 
f(x) = f(x1,··· ,xn) =  1

2
  F(x)TF(x)      (5.17) 

This function is semi-positive defined, and it 
means that f(x) ≥ 0. A descendant direction for 
f at the current approximation x is any vector p 
such that 

                                                                            
∇f(x)Tp < 0 
 
The derivative of the function f(x) is 
∇f(x) = J(x)TF(x) 
 
Therefore p is a descendant direction if 

                                                              
F(x)TJ(x)p < 0 

For this direction exists a coefficient α0 > 0 
such that f(x + αp) < f(x) for all the 0 < α < α0. 
Ife δ  is an approximate solution of the problem 
Jδ = −F it follows that  

ř = −J(x)δ−F(x)                               (5.18)  

FTJ(x) δ = −FTF −F(x) ř                   (5.19) 

A suffcient condition for having a descendant 
direction δ is ‖r‖2 < ‖F ‖2. Such a condition can 
be verified practically calculating the value of 
‖r‖2 and ‖F ‖2. Once that we now that the 
direction is a descendant direction for the 
function f(x) the iteration that has to be used is 
the following 

xk+1 = xk + α·e δ with α > 0                 (5.20)                                       

The scalar is a coefficient that determines the 
step length in the direction δ. Ideally, we want 
to have the that minimizes the function 
f(xk+1). In figure 5.2 there is the picture of a 
possible situation: moving along the direction 
δ at first the function decreases but, after that 
it increases again. 

Finding the that minimizes the function f can 
be, from a computational point of view very 
demanding. Then, in the present work we 
decide to start from a certain value of and 
verifying the condition 

f(xk + α·e δ) < f(xk)  

If the condition is true we choose this value of 
and we start the new iteration; if not the alpha 
will be reduced and the verification will be 
iterated until a suitable will be found. This 
approach is not optimized because we are 
doing more steps than the ones that we would 
do finding each iteration the optimum , but on 
the other hand we have faster iteration. 
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Figure 5.2: Ideal step length to minimize the 
global function 

An example of the efficiency of the 
combination of GMRES and line search 
method is proposed in figure 5.3. The system 
analyzed is a system of 8760 equation in 8760 
unknown quantities and is the typical case used 
in the present work. The unknown quantities 
represent the temperature tx for each hour of 
the year, and the equation are the relative 

balance relations. The plot is a pro le of 
convergence of the norm jfj of the global 
function of the system. In just 18 iterations the 
algorithm reaches a value 

 
The |f| is p√ f2 1 + f2 2 +···+ f2 n then, in this case 
with n = 8760 to have |f| < 10−5, the average 
value of f is 10−7, that means that it is possible 
to reduce a bit the precision and 
decrease the time of calculation. 
 
5.5  Variable velocity 

The program has been done in order to make it 
possible air velocity changes Basically two 
cases are object of study: 
velocity is not zero, then the system of equation 
5.3 is solvable. It is necessary to adapt the heat 
transfer coefficient h(t) depending on the 
velocity u(t). 
velocity is zero. Then we have to  find a way to 
model the behavior in this case, because the 
relations studied until this moment are not 
taking into account this situation. 

 
 

 

 

 

 

 

   

 

 
 

 
 

 

Figure 5.3: Convergence pro le for a system of 8760 equations 

 
5.5.1 case 1: non zero velocity 
When the system is working we assume that 
the amount of mass flow needed require a 
velocity such as the Reynolds number inside 
the pipe is in the range of turbulent flow. For 
turbulent flow the Dittus Boelter relation can 
be used. 
 
Nu = 0.023·Re0.8 ·Pr0.4             (5.21)                                                  

 
Knowing the Nusselt number the heat transfer 
coefficient by convection can be determined. 

 
h =𝑁𝑁𝑁𝑁 ·𝜆𝜆  

𝑑𝑑
 

5.5.2  case 2: velocity equal to zero 
The second case is velocity imposed equal to 
zero. We are in this case when the flow inside 
the duct is undesired. For instance, in summer 
when the target is to harvest heat, it is 
preferable not to have flow if the air 
temperature is lower than the duct 
temperature, because in this case the air owing 
will cool down the duct and then the ground. 
Therefore, a typical condition in which we are 



 
INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR) 

 
ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-3, 2019 

226 

interested in is: air temperature lower than the 
duct temperature, the fan that forces the air 
flow switch o and a transient condition takes 
place until air and duct temperatures come to 
an equilibrium situation. This case is rather 
complex because the difference of 
temperature along the pipe will drive the 
mass, then there will be some natural 
convection between air and pipe. To make the 
analysis we have to simplify the problem and 
make some assumption. We suppose that air 
mass flow inside the pipe in natural 
convection is not that much because even if 
we can have a quite large temperature 
difference between beginning and of pipe the 
fact that the pipe is horizontal limit the 
increasing of speed. For these reasons we 
don’t take into account the air mass flow 
along the pipe when the air is not forced by 
fans. In the present work the transient 
evolution of the temperature is not of interest. 
The interesting quantity is the equilibrium 
temperature air-duct. Considering now a 
single element of length l and comparing the 
air mass contained in the volume inside duct 
and the ground mass that surrounds it, we can 
notice that they are not comparable and the 
ground is much larger than the air mass. Then 
we can suppose that the thermal capacity of 
the air is neglect able compared with the one 
of the ground and then as that the equilibrium 
air temperature after transient will be the 
initial surface duct temperature. Then the 
relation used in this case is the following 

Ts(t−1) = Ts(t) = Tx(t) 
At the instant t the surface maintain the 
temperature of the instant t 1 and the air. All the 
tools needed to build a program to make a 

detailed analysis of the ground storage are now 
available, therefore a practical implementation 
is possible. 

SOLAR COLLECTOR MODEL 
The simulation of the ground storage needs as 
input data hourly temperature from the solar 
collector. The data required are quite detailed 
and inuence a lot the performance of the whole 
system. Therefore, it is necessary to make a 
simple model of the solar collector to get the 
input data for the ground storage. 
 
6.1 Configuration 
The solar collector of the present case is an air 
solar collector. The idea is to integrate it in the 
south facade of the building and in the roof. 
The model has to take into account the solar 
radiation coming to the collector and evaluate 
by an energy balance the heat flux that can be 
extracts by the air that is flowing inside the 
channel. The data available are the hourly 
direct solar radiation, hourly diffuse solar 
radiation, hourly outdoor temperature. The 
useful radiation is the direct solar radiation that 
strikes perpendicularly the surface of the 
collector. We can add to this term the diffuse 
solar radiation. This is not all useful but it’s 
much less than the direct part, then it doesn’t 
influence so much the result. We assume that 
all the diffuse radiation is striking the surface 
of the collector. In order to know the useful 
direct solar radiation we have to know the 
hourly sun position with the respect of a certain 
location of the earth. 
 
6.2  Sun’s angle 
The direction of the sun’s beam can be 
described as a function of: 

 

 

 

 

 

 

 

 

Figure 6.1: latitude , hour angle and declination angle 
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Location on the earth  
surface Time of the day 
Day of the year 
The corresponding parameters are: 

           Latitude (l) 
           hour angle (h) 
           Sun’s declination (δ) 

 

In figure 6.1 an image shows those parameter. 
In the following part the hour angle and sun’s 
declination will be briefly discussed. 

 
6.2.1 Hour angle 
It is defined as the angle between the plane of 
the meridian containing the point of interest 
and the meridian that touches the earth sun 
line. The hour angle is zero at solar noon.  

 

 

 

 

 

 

 

 

 

 

Figure 6.2: solar angle 

It increases by 15 degrees every hour. An 
expression for the hour angle is 
h = 15·(ts −12)              (6.1) 

where ts is the solar time in hours. 
 
Therefore, in order to calculate h, the local 
solar time is required. This depends on the 
local civil time, on the longitude of the location 
and on the equation of time(EOT). The 
equation of time is a relation that permits to 
take into account the irregularity of the sun 

motion due to its inclination and its eccentric 
orbit. 
ts = LCT −4·(Lst −Lloc) + EOT    (6.2) 
                                                                      

Lst is the standard meridian for local time zone 
Lloc is the longitude of the location in question 
in degrees west. Every degree west with 
respect to the reference location is 4 minutes 
less int the solar time. 
 
EOT Equation of time. The expression for the 
equation of time is the following 

 

 

 

 

 

Figure 6.3: Declination angle 
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EOT = 229.2·(0.000075+ 0.001868·cos(N)−0.032077·sin(N)−0.04089·sin(2N))) (6.3) 

6.2.2  Sun’s declination 
The Earth’s axis is tilted 23 1/2 degrees from 
being perpendicular to the plane of the ecliptic. 
The axis of rotation remains pointing in the 
same direction as it revolves around the Sun, 
pointing toward the star Polaris. The constant 
tilt and parallelism causes changes in the angle 

that a beam of light makes with respect to a 
point on Earth during the year. The declination 
angle is defined as the angle between a line 
connecting centers of earth and the projection 
of that line on the equatorial plane. The 
equation that describes the declination angle is 
the following. 

 

 

 

 

 

 

 

 

 

Figure 6.4: solar altitude angle beta and solar azimut P hi 

 
δ = (0.006918−22.9132745·cos(N) + 
4.0254304·sin(N)−0.3872050·cos(2N) +  
0.05196728·sin(2N)−0.1545267·cos(3N) + 
0.08479777·sin(3N))                       (6.4)                                                   
  
N = (n−1)· 360 365 with 1 < n < 365 
 
6.2.3 Sun’s position 
For a given location, the sun position in the 
sky with the relation to an horizontal surface 

can be defined by knowing two angles: the 
solar altitude and the hour angle h. Those are 
described as follow: 

  sin(β) = cos(l)·cos(h)·cos(δ) + sin(l)·sin(δ)  
                                  (6.5) 
 
cos(φ) = sin (δ)·cos (l)−cos (δ)·sin (l)·cos (h) 

 cos (β)
  

                                        (6.6) 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.5: Irradiation striking a vertical surface facing south in Stockholm 
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Now, all the data necessary to determine the 
Irradiation striking a surface are available. We 
can consider the vertical surface facing south 
of the solar collector. The sun see the surface if 
is higher than 0 degrees and if cos(Ø ) < 0. 
When this conditions are verified, given the 
direct irradiation, the amount of it striking 
perpendicularly the collector is: 
 

        I⊥ = cos(β)·(−cos(φ))·Idirect 
The same calculation can be done for a tilted 
surface facing south. The radiation availability 
conditions are the same but this time the angle 
tilt angle  has to be taken into account to get 
the right radiation striking the surface 
 

I⊥ = cos(β −(90−γ))·(−cos(φ))·Idirect 

 
 

 

 

 

 

 

 

 

Figure 6.6: Irradiation striking a 60 degrees tilted surface facing south in Stockholm 

 
6.3 Heat balance over the collector 
Once the irradiation that strikes the surface is 
known, the heat balance of the collector can be 
done. Basically, of this radiation one part will 
be reected than the useful part is the part that 
will be transmitted by the glass and absorbed 
by the absorber. Then, if is the Irradiation 
striking the collector, the useful part will be I . 
This heat ux partly will be    absorbed by the 
air owing in the channel, and partly will be lost 
due to the 
temperature difference between the collector 
surface and the outside temperature. 
                                
     Pin −Plosses = Pgain                                (6.7) 
 
Fr ·(I ·τ ·α·A−U ·A·(tsurface −tout)) = ˙ m·cp ·(t2 

−t1)   (6.8) 
 

Where tout is the outdoor temperature, t1 is the 
inlet temperature in the collector, t2 is the outlet 
temperature, and Fr is the heat removal factor, a 
coefficient that take into account that not the 
whole heat available is useful. By assuming that 

the surface temperature is the average 
temperature between inlet and outlet of the 
collector 
the calculation of the outlet temperature is as 
follows: 
 
t2 = (A·I ·τ ·α·Fr + ˙ m·cp ·t1 + U ·A·tout ·Fr 
−U ·A·Fr ·t1/2)/( ˙ m·cp + U ·A·Fr/2) 

 
Let’s consider an example to see some results 
from this model. Assuming: 

A vertical surface area of 5. 3.5 m2 
corresponding to the wall surface. 
A 60 degrees tilted surface of 5 . 2.5m2 
corresponding to the roof surface. 

 
The product equal to 0.75. 

 
The heat removal factor equal to 0.8 

 
         Considering a double glazed 
surface the U value can be considered 3 
W/(m2K) An air   flow of 0.125 m3/s 
corresponding to 452 m3/hour 
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Figure 6.7: outlet temperature in the study case and with velocity of 0.1257 corresponding to a 
velocity of 1 m/s in a pipe of 0.4m diameter 

EXAMPLES 
In this chapter some application of the model 
explained previously will be showed. At rst 
will be explained how to set up the input data 
and later on some results with relative 
comments will be given. 
7.1  Input data 
The input data required are the same needed 
for the program working with average monthly 
temperatures, but in this case will be 
considered hourly temperature of the whole 
year. The temperatures that have to be given 
are, as always the outside temperature and the 
temperature at the beginning of the pipe. The 
number of samples correspond to the number 
of hours in one year that is 8760. For this 
number of samples the frequencies needed to 
solve the linear part of the problem are n/2+1 
corresponding to 4381. Then, in the system 
study, fem simulation performed in cross 
section, E and F coefficients have to be 
calculated for all these frequencies. For the 
calculation of inlet temperature when a solar 
collector is utilized, has been used the 
procedure explained in the previous chapter to 
find how much does the temperature can gain 
by passing through the solar collector. to size 
the solar collector, has been considered that is 
always better to build a collector with a large 
surface in order to utilize as much solar 

radiation as possible. Therefore for the solar 
collector surface area has been considered a 
whole wall (south wall), and the south side of 
the roof. It has been considered then (6 × 4m2 
+ 6 × 2.5m2 ).By reducing the velocity of the 
air the temperature in the collector rise but it 
results to be less efficient and heat transfer 
coefficient in the pipe is less. On the other 
hand, we want to keep the velocity low to 
reduce the power that has to be supplied to run 
the fans. Hence, the decision is to maintain the 
velocity equal to 1 m=s in winter and 2 m=s in 
summer. 
 
7.2  Examples of analysis 

The study that is going to be performed wants 
to show the effectiveness of the system. In 
order to do that, we will start from a basic case 
and after some features will be added to 
increase the performance. The first simulation 
is just to estimate what can be taken out from 
the ground without solar panel. The 
configuration of the system is 20 cm insulation 
and a pipe of 40 cm diameter buried 2 meters 
deep in the ground. With this system the 
temperature in winter after 80 meters is rather 
constant, variation of more or less 5 C between 
0 and 5 degrees. The result of the simulation 
with such condition is given in figure 7.1. 
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Figure 7.1: Outside temperature and inside temperature after 80 meters pipe in the case taking into 
account just the system pipe burried in the ground 

The idea now is to verify what kind of results 
can be obtained by using a solar collector 
before the piping system. The simulation has 
been lead using a velocity of 1 m/s in winter 
and 2 m/s in summer. During summer time the 
system is run just during the day because the 
aim is to charge the ground and the air 
temperature during the night is rather low, and 
it can’t gain the earth temperature. The results 
of that simulation is showed in gure 7.2; from 
that simulation we can see that compared with 
the case of just ground there is a temperature 
gain due to the utilization of the solar 
collector. On the other hand, we can see that 
by using this con guration, the heat stored 
during summer is wasted very quickly in 
winter. That is due the fact that in winter the 
outdoor air temperature can reach -15 C and it 
is necessary a lot of power to increase this 
very low temperature to interesting 
temperature. The system can be regarded as a 
battery that is charged in summer and 
discharged in winter. To exploit the system 
effectively, it has to be charged as much as 
possible during summer and discharged 
slowly during winter in order to keep 

temperature in the system at a useful level for 
the longest time. 

 
For this reason, it is interesting to exploit the 
advantage of using indirect system. The main 
advantage of this configuration is that 
recirculation can be applied. By using it, the 
input temperature in the system will be always 
higher than a certain temperature level, and the 
heat dischargement is delayed much more than 
using the outdoor air. The problem to make a 
simulation of recirculation with the program 
implemented is that it is working in frequency 
and not on time. With a time domain simulation 
the output temperature of the previous time step 
can be used to quantify the input temperature of 
the present time step. The program 
implemented is working in frequency domain. 
That means that the all input signal has to be 
given and there is no way to make the 
simulation as would have been done in time 
domain. To achieve some results that can be 
close to the obtainable temperature by using 
recirculation, a strategy has to be set up. This 
will be based on some hypothesis and the 
validity of the results will be verified by 
checking their coherence with the assumptions 
made. 
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Figure 7.2: Results of simulation obtained using a solar collector before the storage 
 

7.3  Recirculation 
First we begin explaining what is meant by 
recirculation. The output air from the system 
has a certain temperature level that can be 
exploited as a heat source. After being used in 
this way the air will have a lower temperature 
level, but still higher than the outdoor air 
during winter time; therefore instead of using 
outdoor air, the air can be recirculated in a 
close loop. Hence, the hypothesis that has to be 
accomplished is that a temperature lift between 
the output and the recirculated air is always 
present. That condition means that the air, 
before being recirculated, will loose some of its 
energy content and therefore temperature level, 
by passing through heat exchangers. The 
problem is that we don’t know the input 
temperature in this case. What can be done is 
starting with a first temperature pro le and 
verify that the conditions explained are 
verified. The first hypothesis is that the input 

temperature will be higher compared to the 
case of non recirculation. We have to decide 
what kind of temperature pro le has to be given 
as input to the program. One idea can be to 
chose the output temperature of the simulation 
without recirculation in figure 7.2 as input 
temperature. The result of a simulation run in 
figure 7.3 shows that there is always a 
temperature gap of 10 degrees between the 
inlet and the outlet of the system. This 
temperature difference it’s a good temperature 
to be used in a heat exchanger. It has been 
verified that not all the temperature pro le are 
compatible to the hypothesis made; By 
increasing the temperature of the input pro le 
the gap decreases, and if it is to high it 
disappear. That condition corresponds to 
absence of heat exchange between the ground 
and the air, and as a consequence the output air 
cannot be used to release heat to other fluids in 
a heat exchanger. 

 

 

 

 

 

 

 

 

Figure 7.3: Results obtained by using solar collector and recirculation 
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To simulate recirculation we have to take into 
account also the fact that we can decide to 
recirculate in the solar collector or directly in 
the ground. If the solar radiation is not enough 
there’s no point in recirculating in the solar 

collector cause there will be just losses and the 
input temperature will drop down instead of 
increasing. In figure 7.4 there is an example of 
this two conditions 

 

 

 

 

 

 

 

 

 

Figure 7.4: Data for the case of ricirculation 

 
7.4 System possibility 
The next step is to have an overview of the 
possible practical utilization of the system. 
The target is to reduce the energy utilization 
for heating. The first thing that has to be taken 
into account is insulation. It’s very important, 
and it permits to reduce heat losses from the 
internal to the external environment. If the 
house is well insulated there must be a 
ventilation system that supplies the air 
exchange per hour necessary to keep the air 
quality higher than a minimum level. A 
possible configuration for this house can be: 

• Ventilation system: the air is taken 
from outside and pass through an 
exhaust-supply air heat exchanger. 
After that, if the ground storage can 
provide air with a sufficient 
temperature level to heat or pre-heat, 
then the supply air goes through an 
heat 

• exchanger to gain some power stored 
in the soil; otherwise a heat pump is 
used to supply the latter energy. 

 

• Solar collector coupled with ground 
storage. Air extract energy passing in 
pipe buried in the soil and after release 
some heat  rst directly with the supply 
air to preheat it and after as heat source 
for the heat pump. 

The temperature levels reached with the 
simulation are of technical interest. The air 
lasts over 20 C for a long time during winter. 
We can think about of using directly some of 
the air coming from the solar collector. In this 
way we would have some air at rather constant 
available for the whole day and some other 
warmer air available some hours a day With 
this temperature levels heating and pre-heating 
for a systems working with low temperature 
can be used. In system like TermoDeck for a 
well-insulated building heating can be 
achieved with air at 30-35 C. One part of the 
heat load can be supplied by the ground heat 
storage and the solar collector, and the latter 
one by a heat pump that is working with a very 
stable and good heat source, and therefore with 
a constant and high COP. 
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CONCLUTION 
Two programs to calculate temperature pro le 
of a earth to air heat exchanger has been 
developed. The results that have been found 
are interesting and they give a first proof that 
the ground storage for solar energy is an 
interesting solution that can be exploited in 
the building sector. The two programs are 
complementary cause the first one is fast but 
the results are rough, while the second one is 
more detailed but slower. By using them 
together a high knowledge of the ground heat 
storage can be achieved. 

 
From the results, it have been found that by 
using air as working fluid the system can have 
good performances and can be used as a good 
source for a heat pump and also for a 
preheating system supplying directly part of 
the heat needed from the house. Ideally, we 
would like to supply the whole heat needed by 
the house with this system without the help of 
the heat pump; but with the configuration 
studied and air as a working fluid, we found 
that is not possible to reach this result. 
Anyway, part of the heat can be supplied 
directly, and part from a heat pump working in 
ideal conditions. 
 
  A further investigation with the tool should be 
done by doing some tests and finding out the 
best working configurations for the system. It 
can be interesting to make tests with other 
working    fluids like water or other secondary 
fluids. An experimental test should be done in 
order to proof on practice the potential of the 
system. 
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