

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-6, 2019

DOI: 10.21276/ijcesr.2019.6.6.17
90

PARTIAL PRODUCT ARRAY HEIGHT REDUCTION USING

RADIX-16 FOR 64-BIT BOOTH MULTIPLIER
Jenitha.A1, Ashwini S2, Bharath Reddy S3, Dinesh Kumar R4, Sahana R5

1Assoc. Prof, Dept. of ECE, Dr.TTIT, jenitha@drttit.edu.in
2,3,4,5Student , Dept. of ECE , Dr.T.T.I.T, bharathreddy601@gmail.com

ABSTRACT
We describe an optimization for binary
radix-16 (modified) Booth recoded
multipliers to reduce the maximum height of
the partial product array of columns to _n/4_
for n = 64-bit unsigned operands. This is
contrast to the conventional maximum height
of (n + 1)/4. Therefore, a reduction of one
unit in the maximum height of partial
product is achieved. The reduction may add
flexibility during the design of the pipelined
multiplier to meet the required design goals,
it may allow further optimizations of the
partial product array reduction stage in the
area/delay/power and/or may allow
additional addends to be included in the
partial product array without increasing the
delay. The method that can be extended to
the Booth recoded multipliers, signed
multipliers, combined signed/unsigned
multipliers, and other values of n.
Keywords: Partial Product, Booth recoded
multipliers

I. INTRODUCTION
Binary multipliers are a widely used building
block element in the design of microprocessors
and embedded systems, and therefore, they are
an important target for implementation
optimization. Current implementations of
binary multiplication follow the steps of 1)
recoding of the multiplier in digits in a certain
number system 2) digit multiplication of each
digit by the multiplicand, resulting in a certain
number of partial products 3) reduction of the
partial product array to two operands using
multi operand addition techniques and 4) carry-
propagate addition of the two operands to
obtain the final result.

The recoding type is a key issue, since it
determines the number of partial products. The
usual recoding process recodes a binary operand
into a signed-digit operand with digits in a
minimally redundant digit set [7], [8].
Specifically, for radix-r (r = 2m), the binary
operand is composed of no redundant radix-r
digits (by just making groups of m bits), and
these are recoded from the set {0, 1,…. r − 1} to
these {−r/2, . . . ,−1, 0, 1, . . ., r/2} to reduce the
complexity of digit multiplications. For n-bit
operands, a total of n/m partial products are
generated for two’s complement representation,
and (n + 1)/m for unsigned representation. The
maximum column height may determine the
delay and complexity of the reduction tree, In
this extra column of one bit could be
assimilated (with just a simplified three bit
addition) with the most significant part of the
first partial product without increasing the
critical path of the recoding and partial product
generation stage.

The result is that the partial product
array has a maximum height of n/2. This
reduction of one bit in the maximum height
might be of interest for high-performance short-
bit width two’s complement multipliers (small
n) with tight cycle time constraints that are very
common in SIMD digital signal processing
applications.Moreover, if n is a power of two,
the optimization allows to use only 4-2 carry-
save adders for the reduction tree, potentially
leading to regular layouts. These kind of
optimizations can become particularly
important as they may add flexibility to the
“optimal” design of the pipelined multiplier.

Optimal pipelining in fact, is a key issue
in current and future multiplier (or multiplier-

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-6, 2019

DOI: 10.21276/ijcesr.2019.6.6.17
91

add) units: 1) the latency of the pipelined unit is
very important, even for throughput oriented
applications, as it impacts the energy
consumption of the whole core, and 2) the
placement of the pipelining flip-flops should at
the same time minimize total power, due to the
number of flip-flops required and the
unbalanced signal propagation paths. The
methods proposed in [1] and [2] were mostly
focused on two’s complement radix-4.

Booth multipliers, thus leaving open the
research and extension to higher radices and
unsigned multiplications (for unsigned integer
arithmetic or mantissa times in a floating-point
unit).For a radix higher than 4, it is necessary to
generate the odd multiples (usually with
address), a resulting in the reduction of the time
slacks necessary to “hide” the simplified three
bit assimilation. Unsigned multiplication may
produce a positive carry out during recoding
(this depends of the value of n and the radix
used for recoding), leading to one additional
row, increasing the maximum height of the
partial product array by one row, not just in one
but in several columns. For all these reasons,
the extend techniques are presented in [1] and
[2]. In this work, the present technique that
allows partial product arrays of maximum
height of n/m (with the goal of not increasing
the delay of the partial product generation
stage), for r >4 and unsigned multipliers. Since
for the standard unsigned multiplier the
maximum height is (n + 1)/m, the proposed
method allows a reduction of one row when n is
a multiple of m.

This technique is general, but its impact
(reduction of one row without increasing the
critical path of the partial product generation
stage) depends on the specific timing of the
different components. Therefore, it cannot
claim a successful result for all practical values
of r and n and different implementation
technologies. Thus, it concentrates on a specific
instance: a 64-bit radix-16 Booth recoded
unsigned multiplier implemented with a
synthesis tool and a standard-cell library.
Therefore by using radix-16 since it is the most
complex case, among the practical values of the
radix, for the design of our scheme.

The unsigned multiplier is also more
complex for the design of our scheme than the

signed multiplier. By using 64 bits, since it is a
representative large word length. The method
proposed can be adapted easily to other
instances (signed, combined unsigned/signed,
radix-8 recoding, different values of n).

II. METHODOLOGY

Fig 1: Block Diagram of Booth multiplier.

A & B are the Primary inputs of a
Multiplier and it’s given into Booth Encoding
Block. Booth Encoding will generate the
Encoded Data of B. The Encoded Values are
given into Partial Product Generator. This
Block generated Partial Product Values Based
on the Radix Method.

Digital multipliers are widely used in
arithmetic units of microprocessors, multimedia
and digital signal processors. Many algorithms
and architectures have been proposed to design
high-speed and low power multipliers. This
includes three steps by digital circuits in a
Normal Binary (NB) multiplication. In the first
step, it generates the partial product. In the
second step, all partial products are added by a
partial product reduction tree all the partial
products are added until two partial product
rows remains.

In the third step, the two partial product
rows are added by the fast carry propagation
adder. Two methods have been used to perform
the second step for the partial product
reduction. A first method uses 4-2 compressors,
while a second method uses the redundant
binary (RB) numbers. Both methods allows the
partial product reduction tree to be reduced at a
rate of 2:1.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-6, 2019

DOI: 10.21276/ijcesr.2019.6.6.17
92

The redundant binary number representation
has been introduced to perform signed- digit
arithmetic; the RB number has the capability
to be represented in different ways.

For example, in radix-16 signed digit
recoding the digit set is {−8, −7. . . 0, . . . , 7,
8}, so that some odd multiples of the
multiplicand have to be generated.
Specifically, it is required to generate ×3, ×5,
and ×7 multiples (×6 is obtained by simple
shift of×3). The generation of each of these
odd multiplies requires a two term addition or
subtraction, yielding a total of three carry-
propagate additions.

The architecture of the basic radix-16
Booth multiplier is shown in Fig 1. For sake of
simplicity, but without loss of generality,
unsigned operands with n = 64 are considered.
Let X denote the multiplicand operand with bit
components xi (i = 0 to − 1, with the least-
significant bit, LSB, at position 0 and with Y
the multiplier operand and bit components yi.

The first step is the recoding of the
multiplier operand: groups of four bits with
relative values in the set {0, 1, 14, 15}
are recoded to digits in the set{−8,−7, . . . , 0, . .
. , 7, 8} (Minimally redundant radix- 16 digit
set to reduce the number of multiples). This
recoding is done with the help of a transfer digit
ti and an interim digit wi.

After the generation of the partial
product bit array, the reduction (multi operand
addition) from a maximum height of 17 (for n =
64) to 2 is performed. The methods for multi
operand addition are well known, with a
common solution consisting of using 3 to 2 bit
reduction with full adders (or 3:2 carry-save
adders) or 4 to 2 bit reduction with 4:2 carry-
save adders. The delay and design effort of this
stage are highly dependent on the maximum
height of the bit array. It is recognized that
reduction arrays of 4:2 carry-save adders may
lead to more regular layouts.

For instance, with a maximum height
of 16, a total of 3 levels of 4:2 carry-save
adders would be necessary. A maximum height
of 17 leads to different approaches that may
increase the delay and/or require using arrays
of 3:2 carry-save adders interconnected to
minimize delay [20]. After the reduction to two

operands, a carry-propagate addition is
performed. This addition may take advantage
of the specific signal arrival times from the
partial product reduction step.

Table 2.1: Booth Encoding Table

III. IMPLEMENTATION

 Implementation is the process that turns
strategies and plans into an actions in order to
accomplish strategic objectives and goals.
Implementing is the realization of an
application, or execution of a plan, idea, model,
design, specification, standard, algorithm, or
policy. Implementation is a realization of a
technical specification or algorithm as a
program, software component, or other
computer system through computer

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-6, 2019

DOI: 10.21276/ijcesr.2019.6.6.17
93

programming and deployment. The following
blocks booth encoder, partial product generator,
adder, & ecw are implemented using Modelsim.

A. FLOW DIAGRAM
Booth’s multiplication examines adjacent

pairs of bits of ‘N’-bit multiplier Y in signed
two’s complement representation, including an
implicit bit below the least significant bit.
Modified Booth Encoding will generate the
Encoded Data as PP i.e., partial product. The
encoding process is done using chain grouping
method which is shown in the example. The
Encoded Values are given into Partial Product
Generator. This Block generated Partial Product
Values from PP0 to PP15 each of 32 bit Based
on the Radix Method.

Fig2: Flow diagram

Partial product for multiplying two or three
digit numbers in columns that can be easier by
making use of standard algorithm of
multiplication. In a large number multiplication
grouping the number to multiply into parts,
multiply the parts separately, and then add. A
product formed by multiplying the multiplicand
by one digit of the multiplier when the
multiplier has more than one digit. Partial
products are used as intermediate steps in
calculating larger products. The partial product
to solve a multiplication equation can set it up
like a traditional long multiplication equation.

Just like traditional long multiplication, by
multiplying the ones digit of the second factor
first. When more digits are used then by
multiplying the ones first, and then the tens.

The outputs of partial product generator PP0 to
PP15 are given as the input to Ripple carry
adder, Ripple carry adder is a digital circuit that
produces the arithmetic sum of binary number it
can be constructed using full-adders connected
in cascaded, with the carry output. From each
full-adder connected to the carry input of the
next full-adder in the chain.

 A Booth Encoding and Partial Product
Generation Block is implemented. Initially,
Booth Encoding is made by Padding a Zero in
LSB Side. Next, Grouping is Made by Radix -
16 Method. So the Multiplier has to be grouped
as 5 bits. Then Based on the Radix 16 Table by
Multiply with Multiplicant to Generate Partial
product Generation. Thus design make only 16
partial products in this Proposed method.

IV. RESULTS
In this presented method to reduce by

one the maximum height of the partial product
array for 64-bit radix-16 Booth recoded
multipliers. This reduction may allow more
flexibility in the design of the reduction tree of
the FIR Filter Application. We have
implemented the Proposed Multiplier design
into FIR Filter. Radix-16 Booth recoded
multipliers are attractive for low power designs,
mainly to the lower complexity and depth of the
reduction tree, and therefore they might be very
popular in this era of power-constrained designs
with increasing overheads due to wiring in
Communication Design Field.

Simulation:
A. Main Partial Product generation

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-6, 2019

DOI: 10.21276/ijcesr.2019.6.6.17
94

Here X and Y are the inputs

X=000000000000000000000000000000000000
0000001010101010101010101011

Y=000000000000000000000000000000000000
0000000000111010101010101111

Step 1: Booth Encoding

Pad the Zero in the LSB Multiplier

Y_N=000000000000000000000000000000000
00000000000001110101010101011110

Step 2: Grouping 1

11110

Step 3: According to the Table 3.5.1

-1 multiply with Multiplicand

PP0=0111111111111111111111111111111111
1111111110101010101010101010101

B. Booth Encoding

C. The Overall View

D. RTL schematic of Rdix-16 multiplier

E. RTL schematic of PP block1 and Adder
tree

F.Overall Schematic view of 64-bit Booth
algorithm

V. CONCLUSION

The Multiplier using the proposed algorithm
improves the efficiency of area in terms of LUT
Slices and gates,Decreasing the Delay and
Power consumption & achieves reduction of

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-6, ISSUE-6, 2019

DOI: 10.21276/ijcesr.2019.6.6.17
95

one unit in the maximum height. Here we have
presented a method to reduce by one the
maximum height of the partial product array for
64-bit by describe an optimization for binary
radix-16 (modified) Booth recoded multipliers
to reduce the maximum height of the partial
product columns to [n/4] for n = 64 - bit
unsigned operands.

Radix-8 and radix-16 Booth recoded
multipliers are attractive for low power designs,
mainly to the lower complexity and depth of the
reduction tree, and therefore they might be very
popular in this era of power-constrained designs
with increasing overheads due to wiring.

The booth multiplier is an efficient multiplier
that can be used in the designing of digital
signal processing systems. It not only performs
multiplication of signed numbers without errors
but also increases the speed. Memory
consumption is minimal.

 APPLICATIONS
i) It has the most basic advantage in digital
signal processing.

ii) It is used along with multiplier-accumulator
(MAC) that reduces the partial derivatives of
multiplication product with ease in circuitry.

iii) It increases the efficiency of the system by
enhancing its speed.

iv) Better performance in low cost at low power
consumption.

REFERENCE
[1] Weiqiang Liu, Liangyu Qian, Chenghua

Wang, and Jie Han “Design of
Approximate Radix 4 Booth Multipliers
for Error-Tolerant Computing ,”
IEEE Trans. INSPEC
Accession Number: 17149541 Aug. 1
2017

[2] F. Lamberti et al., “Reducing the
computation time in (short bit-width)
twos complement multipliers,” IEEE

Trans. Comput., vol. 60, no. 2, pp. 148–
156, Feb. 2011.

[3] N. Petra et al., “Design of fixed-width
multipliers with linear compensation
function,” IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 58, no. 5, pp. 947–960,
May 2011.

[4] S. Galal et al., “FPU generator for design
space exploration,” in Proc. 21st IEEE
Symp. Comput. Arithmetic (ARITH),
Apr. 2013, pp. 25–34.

[5] K. Tsoumanis et al., “An optimized
modified booth recoder for efficient
design of the add-multiply operator,”
IEEETrans.Circuits Syst.I,Reg. Papers,
vol. 61, no. 4, pp. 1133–1143, Apr. 2014.

[6] A. Cilardo et al., “High speed speculative
multipliers based on speculative carry-
save tree,” IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 61, no. 12, pp. 3426–
3435, Dec. 2014.

[7] S. Vassiliadis, E. Schwarz, and D.
Hanrahan, “A general proof for
overlapped multiple-bit scanning
multiplications,” IEEE Trans. Comput.,
vol. 38, no. 2, pp. 172–183, Feb. 1989.

[8] E. M. Schwarz, R. M. A. III, and L. J.
Sigal, “A radix-8 CMOS S/390
multiplier,” in Proc. 13th IEEE Symp.
Comput. Arithmetic (ARITH), Jul. 1997,
pp. 2–9.

[9] K. Muhammad et al., “Speed, power,
area, latency tradeoffs in adaptive FIR
filtering for PRML read channels,” IEEE
Trans. Very Large Scale Intgr. Syst., vol.
9, no. 1, pp. 42–51, Feb. 2001.

[10] G. Colon-Bonet and P. Winterrowd,
“Multiplier evolution: A family of
multiplier VLSI implementations,”
Comput. J., vol. 51, no. 5, pp. 585–594,
2008.

https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22Weiqiang%22&searchWithin=%22Last%20Name%22:%22Liu%22&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22Liangyu%22&searchWithin=%22Last%20Name%22:%22Qian%22&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22Chenghua%22&searchWithin=%22Last%20Name%22:%22Wang%22&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22Chenghua%22&searchWithin=%22Last%20Name%22:%22Wang%22&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22Chenghua%22&searchWithin=%22Last%20Name%22:%22Wang%22&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22Jie%22&searchWithin=%22Last%20Name%22:%22Han%22&newsearch=true

