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Abstract 
The rapid development and advancement 
in communication technologies leads to 
increase communication networks both 
regarding size and complexity. This 
constant increase in complexity of 
communication networks leads to serious 
challenges for network management 
operating systems. However, in 
communication networks, link failures 
are unavoidable but the detection, 
identification, and recovery of failures in 
complex networks in a timely manner is 
crucial for the reliable operation of the 
networks. However, fault localization, is a 
major aspect in network fault 
management, it is a process of deducing 
the exact source and location of a failure 
in a communication link from a set of 
previous observed failure indications. The 
research activity is focusing highly to 
localize the faults as soon as possible due 
to advent of modern communication 
systems having complex networks which 
have high possibilities of fault 
occurrences. However, due to evolving 
complexity in communication systems, the 
requirements on fault identification and 
localization techniques undergo major 
changes as well. It should be mentioned 
that despite this research developments 
effort, fault localization in complex 
communication systems is still a major 
research problem. This paper presents an 
overview of proposed solutions of the 
adopted techniques for the past years as 
well as challenges in localizing fault of 
complex communication systems, and 
their advantages, and shortcomings. 

 
I.Introduction 
Fault diagnosis and localization are the 
major aspects of network fault management. 
As faults are not avoidable in 
communication systems, quick detection and 
isolation of faulty network is essential for 
communication robustness, reliability, and 
accessibility of a system. In complex 
communication networks, automating fault 
management is crucial. Event, is an 
exceptional condition occurring during the 
operation of hardware or software in a 
managed network which is a central concept 
in fault diagnosis. Faults (unusual condition 
in a network link) comprise a class of 
network events that affect other events, but 
they are not caused by other events. 

 Faults are classified mainly based 
on their time duration as: (1) permanent, (2) 
intermittent, and (3) transient. Permanent 
fault remains in a network until a repair 
action is taken. Intermittent faults occur in a 
random or periodic basis causing service 
degradation for certain period. However, 
frequent occurrence of intermittent faults 
highly degrade service performance. These 
faults cause a temporary and minor 
degradation of service and those faults can 
be automatically repaired by error recovery 
procedures [1]. 

Errors are defined as a difference 
between a computed or measured value to a 
true or theoretically correct value or 
condition [1]. Error is the result of a fault. 
Faults may or may not cause errors. Errors 
may cause deviation of a service from the 
specified service, which is visible to the 
outside world. The term failure refers to this 
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type of error. Errors need not be corrected 
directly, and in many cases, they are not 
externally visible. However, an error may 
cause a malfunctioning of dependent 
network devices or software. Thus, they 
may propagate within the network causing 
failures of faultless hardware or software 
[1]. Symptoms are indication of failures [2]. 
They are indicated by alarms notifications of 
a potential failure [2]. These notifications 
are originated by management protocol 
messages from management agents (e.g., 
SNMP trap [3] and CMIP EVENT-
REPORT [4]) also from management 
systems monitoring the network status e.g., 
using ping command [5], and also from 
system log-files or character streams sent by 
external equipment [6]. Some faults can be 
observed directly. On the other hand, there 
are also many types of faults which are 
unobservable due to (1) their intrinsically 
unobservable nature, (2) local corrective 
mechanisms of management systems that 
destroy evidence of fault occurrence, or (3) 
inefficiency of management functionality to 
provide indications for fault existence. 
There are some faults which are partially-
observable by the management system 
which indicates fault occurrence, but those 
indications are not sufficient to localize the 
fault. Since most of the faults in the network 
are not directly observable, the management 
system has to clearly verify the information 
provided by the received alarms. The 
reported alarms carry information which 
may include : the object identity which 
generated the alarm, failure type, timestamp, 
alarm identifier, failure severity, a 
description of the failure, etc. [7,6]. In a 
communication network, many numbers of 
alarms that can be created by a single fault 
which will be delivered to the network 
management center. The cause of multiple 
alarms may be a due to (1) repeated fault 
occurrence, (2) multiple interruptions in the 
service provided by a faulty component, 
(3)generating multiple alarms by a device, 
(4) many devices simultaneously detection 
and issuing a notification about the same 
network fault, and (5) error propagating to 
other network devices which cause them to 
fail which in turn generate additional alarms 
[7]. 

Fault diagnosis process mainly involves 
three steps: 

• Fault detection [4]- process of identifying 
the occurrence of fault by capturing 
indications of network disorder from alarms. 

• Fault localization [4,5,10] – locating exact 
fault locations from the information 
provided by a set of observed fault 
indications. 

• Testing [5,10]- Determining the actual fault 
location from a number of possible 
predictions. 

This survey focuses on the fault 
localization which is a process of deducing 
the exact source of the failure from the set of 
observed failure indications. The most 
popular fault localization technique is alarm 
correlation which is a process of grouping 
alarms related by having the same cause of 
failures. Fault localization is subjected to 
complications resulting from complexity, 
unreliability and non-determinism of 
communication systems 
II .Fault localization based on Alarm 
correlation systems 

In [11], a method and a tool is 
presented for the discovery of repeated 
patterns of alarms databases; these patterns, 
episode rules, which can be used in real-
time alarm correlation systems.  The episode 
rules provide statistical information about 
repeated phenomena in the alarm stream, by 
which the correlation systems construction 
becomes easier with those tools. A research 
system called TASA employs this 
methodology, which is used by several 
telecommunication operators 

Large amounts of alarms are 
produced by the network elements when 
faults occur in a network. Fully employing 
this valuable data in network management is 
difficult, however, due to the high volume, 
and the fragmented nature of the 
information. In alarm correlation, a 
management center automatically analyzes 
the stream of alarms, notifications and clear 
messages it receives from a 
telecommunication network. Alarm 
correlation is typically based on looking at 
the active alarms at a time interval and 
incorporating them as a group. This 
interpretation can result in filtering of 
redundant alarms, identification of faults, 
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and in suggestions for corrective actions. 
The motive of alarm correlation systems is 
processing the large alarm data set into a 
smaller and useful set of reports to ease the 
work of network managers. The diversity of 

complex network elements, and the pattern 
of alarm occurrence variation pose serious 
problems for network management experts 
building a correlation model. 

 
  

 
Fig. 2.1. The flow of alarms from a telecommunication network in an alarm correlation system. 

 
In this paper, methods for semi-automatic 
discovery of patterns is presented in alarm 
databases; these methods help in the 
construction of alarm correlation systems. A 
novel algorithm is used to discover recurrent 
patterns in large alarm databases. Then 
iterative information retrieval method is 
applied to give flexible views to the 
discovered patterns. The method for 
generating alarm correlation systems 
contains the following three steps: 
     1. Semi-automatic off-linediscovery of 
alarm patterns. 
     2. Construction or modification of an 
alarm correlation system. The discovered 
patterns are used only to aid the experts in 
recalling and formulating correlation 
patterns. 

     3. The correlation system in real-time 
alarm management. 
 The ideas expressed in the article [11] 
,have been implemented in a system called 
TASA, for Telecommunication Alarm 
Sequence Analyzer. The TASA system has 
been developed in co-operation with the 
four telecommunication companies.  
III. Various Fault localization techniques 

 In [12], fault localization 
challenges in complex communication 
systems and overview of solutions proposed 
in the past years, and also their advantages 
and shortcomings are discussed. Fault 
diagnosis is the major aspect of network 
fault management systems. Automating fault 
diagnosis in large and complex 
communication networks, is critical. 
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                             Fig. 2.2. Classification of fault localization techniques. 
 
Expert systems try to imitates knowledge of a 
human expert when solving problems in a 
particular domain. 
Rule-based systems- Rely solely on surface 
knowledge, do not require prior understanding 
of the system architectural and operational 
principles. 
Disadvantage - Rule-based systems include 
inability to learn from experience, inability to 
deal with priorly unknown problems, and 
difficulty in updating the system knowledge. 
In model-based expert systems, conditions 
associated with the rules usually include 
predicates referring to the system model. The 
existence of a relationship among system 
components is tested by these predicates. 
Case-based systems are a special class of 
expert systems that base their decisions on 
experience, past situations and previously used 
solutions. Neural networks, which are systems 
composed of interconnected nodes called 
neurons, try to mimic operation of a human 
brain. The main disadvantage in case based 
systems is that they require long training 
periods 
Decision trees - Assign time or other values to 
possible outcomes, so that decisions are 
automated.  
Model traversing techniques - use formal 
representation of a communication system with 
clearly marked relationships among network 
entities. By determining these relationships 
between the network entity that reported an 
alarm and fault, the fault identification process 
determines which alarms are correlated and 
locate faulty network elements. 

Graph-theoretic techniques rely on a 
graphical model of the system, called a fault 
propagation model. Graph-theoretic techniques 
requires a priori information of relationship 
between a failure condition or alarm in one 
component to failure conditions or alarms in 
other components. 
  The most challenging issues concern 
multi-layer fault localization, distributed 
diagnosis, temporal correlation, fault 
localization in mobile ad hoc networks, and 
root cause analysis in a service-oriented 
environment. 
 
IV.Fault localization based on probabilistic 
inference 
In [13],a novel network fault localization 
algorithm is proposed based on active network 
measurements, probabilistic inference and 
change detection. The algorithm is 
computationally efficient for networks with 
thousands of nodes and requires few 
configuration parameters. The algorithm is 
based on active network measurements, 
probabilistic inference and change detection. 
Simulation results shows that solution provides 
fast and accurate localization of performance 
degradations on tree topologies. One important 
benefit of our filter-based estimation is the 
inherent resiliency against noise in the 
sampling (i.e. measurements and measurement 
infrastructure) as well as in the measured 
system (i.e. the network). In other words the 
filter does not rely on each measurement 
sample being perfectly accurate. 
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Fig 4.1: Overview of the network performance degradation localization  solution. 
 

An additional feature of filters is that sample 
data is aggregated in the filter outcome over 
time. The filter itself becomes a storage 
container for aggregated values of samples 
collected from the network. This reduces the 
need for storing previous samples for later 
processing. Reduced storage decreases the 
complexity of the implementation. The filter 
construction described above is robust in the 
sense that particle weights are updated 
according to the measurement values that may 
contain errors, and that the particle 
corresponding to the problematic edge will 
eventually have the highest weight. a change 

detection technique is introduced in order to 
remove the need to configure the threshold for 
alarm generation while maintaining the 
capability to perform online calculations on 
measurement results as they arrive. Tuning the 
memory properties of the filter becomes more 
important as the network size increases. Tree 
topologies are particular cases of interest in this 
respect. As the edges connecting the leaves are 
traversed seldom, the increase factor needs to 
balance the decreases performed by the filter 
until the next time the degraded edge is 
traversed. 

 
TABLE 4.1-Filter and analyzer parameters for different tree sizes 

 
 

 

 
 
 
 
 
 
 
As shown in Table 4.1, an increase in the tree 
size determines an increased outspreading effect 
on the filter probability mass and hence also has 
a negative influence on the degradation 
localization time. One way to remedy this is to 
increase selected parameter values with 
increasing network size 

 The paper [13] examines a novel 
algorithm for determining the location of 
performance degradations in packet networks. 
The algorithm is based on discrete state-space 
particle filters and change detection statistics, it 
has 3-10 times faster time to localization in 
many cases compared to our previous method 
and removes the need to configure alarm 

Tree 
Size 

h T δ λ γ 

13 3 4 0.975 5 0.75 

40 3 3 0.975 15 0.75 

121 3 3 0.975 25 0.75 

364 3 2 0.974 40 0.75 

1093 3 2 0.995 80 0.75 
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thresholds. The algorithm was evaluated in a 
simulator where properties such as degradation 
localization time and false positives were 
studied in-depth. The outcome of the evaluation 
showed that the algorithm is effective in 
automatically identifying the location of a 
performance degradation. The efficiency is 
dependent on the exact position of the 
degradation in a tree topology, the furthest away 
from the root, the more time it would take to 
detect a problem. 
V. Fault localization using combination of 
Bayesian Networks and Case-Based 
Reasoning 
In [14], a new hybrid mechanism is proposed as 
a combination of Bayesian Networks and Case-
Based Reasoning to overcome certain limits in 
fault diagnosis techniques and reduce human 
intervention in this process. This mechanism 
identifies the root cause of failure with a finer 
precision and high reliability with reduced 
computation time even in the condition of 
network dynamicity. 
The functional model specifies that the 
following functions, are incorporated by a 
network management system: Fault, 

Configuration, Accounting, Performance and 
Security (FCAPS).  
 This method presents a new hybrid 
approach combining Case-Based Reasoning 
(CBR) and Bayesian Networks (BN). Bayesian 
Networks are currently the most powerful and 
popular diagnosis method. However, the 
complexity of inference in Bayesian Networks 
increases exponentially with the number of 
nodes. Hence, this technique is not suitable for 
large scale systems including a large number of 
components such as current and future networks 
with hundreds or thousands of elements. To 
overcome this limitation, a combined case-
based and Bayesian reasoning approach is 
proposed to improve the BN inference, while 
keeping the advantages of BN technique. The 
resulting solution improves the degree of 
automation of the diagnosis process and 
requires less intervention of human 
expertise.Whatever the size of the original 
network, case-based and Bayesian reasoning 
approach can precisely identify the root cause 
and with greater accuracy than the BN 
technique. 

TABLE 5.1- Test of Accuracy 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
The observation of the results highlights that 
the BN technique is less accurate and the 
accuracy varies with the size of the network. 
Table 5.1, shows the results obtained for a 
network size ranging from 10 to 500 nodes. 
  An extensive evaluation was conducted 
in simulation and showed the benefits of the 
approach in comparison to the pure Bayesian  

 
 
 
 
 
 
 
 

Network approach according to three main 
metrics, namely: accuracy, reliability and 
speed. The solution is simple, flexible and 
scalable. It outperforms the traditional 
Bayesian Network method in all criteria 
bringing an increased speed with gains up to 
two orders of magnitude, combined 
advantageously with a higher accuracy and 
reliability. The reduction of the complexity 

Number of node in 
BN 

BN approach CBR-BN 
approach 
 

10 nodes 2 to 3 1 

20 nodes 3 to 4 1 

30 nodes 3 to 4 1 

40 nodes 3 to 4 1 

60 nodes 3 to 4 1 

80 nodes 3 to 4 1 

100 nodes 4 to 5 1 

200 nodes 4 to 6 1 

500 nodes 6 to 8 1 
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enabled by the technique is also promising and 
will be the subject of future investigations in 
order to formally prove the level of complexity 
reduction attainable. 
 
VI. Fault detection and diagnosis (FDD) on 
solar-powered Wireless Mesh Networks 
(WMNs) 
 In [15], automated fault detection and 
diagnosis (FDD) on solar-powered Wireless 
Mesh Networks (WMNs) is proposed. We have 
used the Knowledge Discovery in Databases 
(KDD) methodology and a pre-defined 
dictionary of failures based on our previous 
experience with the deployment of WMNs.  
 
Thereafter, the problem was solved as a pattern 
classification problem. Several classification 
algorithms were evaluated, such as Naive 
Bayes, Support Vector Machine (SVM), 
Decision Table, k-Nearest Neighbors (k-NN) 
and C4.5. The SVM presented the best results, 
having 90.59% training accuracy and over 85% 
accuracy in validation tests. 
 To produce a history of labeled faults, a 
set of real-problem emulations were performed 
in the network. Based on a labelled history 
database, the supervised learning approach was 
used as the machine learning technique. 
Several classification algorithms were 
considered and tested, namely: Naive Bayes, 
Support Vector Machine (SVM), Decision 
Table, k-Nearest Neighbors (k-NN) and C4.5. 
Another database, containing only naturally 
occurred faults’ data, not emulated ones, was 
used for results validation.This method goals 
are: (1) propose the KDD methodology and the 
supervised learning approach to solve the fault 
detection and diagnosis problem in WMNs; (2) 
describe each solution step, the difficulties 
faced during the development of the proposed 
solution and how they were overcome; (3) 
provide an autonomous FDD module to be part 
of the WMN management integrated platform. 
 The REMOTE project deployed a 
communication infrastructure based on WMN. 
While the ultimate goal is to deploy our 
solution at the production network of the 
REMOTE project, in the development phase, 
prototypes were evaluated in a WMN testbed 
located on one university campus at UFF. Both 
the production network and the testbed are 
infrastructure WMNs and have similar 
characteristics as energy constraints, the use of 

a solar power system and multiple radios with 
the same technologies. Therefore, the 
methodology and the scenarios used in the 
development phase have immediate 
applicability for the production network.  
Each mesh router is composed of three 
modules: 
 Communication module: consists of a 
router with two wireless interfaces, a client 
access interface consisting of an IEEE 802.11g 
radio, and an interface for communication 
between nodes (backbone), consisting of an 
IEEE 802.11a radio. The backbone radio is 
connected through an RF splitter to two 
directional antennas pointed towards specific 
nodes. The network protocol used is the 
Optimized Link State Routing (OLSR), a link 
state based protocol designed for ad hoc 
networks. In the REMOTE’s network an OLSR 
variation is used, the OLSR-ML. This variation 
uses as cost function the Minimum Loss (ML) 
metric,which results in routes with minimum 
error probability in end-to-end communication. 
 Power module: is formed by a solar 
power system that comprises a 40 W solar 
panel, a charge controller and a bank of three 
12 V/7Ah lead-acid sealed batteries connected 
parallel, resulting in a voltage of 12 V and total 
rated capacity of 21 Ah. 
 Sensing module: used for site 
supervision, contains two LM35 temperature 
sensors, one LDR 5mm light sensor, voltage 
and current sensors for the solar panel, batteries 
and primary load (the communication module). 
It allows monitoring the following physical 
data of the mesh router: Solar Panel Voltage, 
Solar Panel Current, Battery Voltage, 
Communication’s Module Voltage, 
Communication’s Module Current, External 
(ambiance) Temperature, Internal (sealed box) 
Temperature, Incident Light Intensity, Bytes 
in/out for each Network Interface, Available 
Flash Memory, Available RAM memory, CPU 
Load Average and Link Quality. Instantaneous 
samples of these data are collected and stored 
by Mesh Admin every ten minutes. 
 With the databases formed, a number of 
well known classification algorithms for the 
problem were compared, namely Naïve Bayes, 
Decision Table, k-NN, SVM and C4.5. The 
result of this evaluation showed that the C4.5 
and the SVM algorithms had the best overall 
prediction performances, with accuracy over 
85%. This accuracy level indicates that an 
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autonomous solution is, indeed, feasible. Their 
results were brought to a validation test. In this 
test, the C4.5 presented overfitting 
characteristics, with poor results when new 
data was used. While the SVM has shown a 
good overall performance. An already expected 
weak point, the Battery Failure detection was 
identified. This problem was solved using a 
multi-classification solution - the two classes 
with higher likelihood of success are presented 
to the user. With this adjustment, the classifier 
presented the correct diagnosis (between the 
two indicated) in all cases and the work was 
considered satisfactory. 
 
VII. Challenges in fault localization 
In [16], fault localization  challenges  in 
complex communication  systems was 
discussed and presented an overview of recent 
techniques. The more recent fault localization 
research is described in five categories: active 
monitoring techniques, techniques for overlay 
and virtual networks, decentralized 
probabilistic management techniques, temporal 
correlation techniques, and learning techniques. 
 ACTIVE MONITORING 
TECHNIQUES: A probing station is a node in 
the network that transmits one or more packets 
called probes for the purpose of monitoring the 
state of the network. Examples of probes may 
be ping or traceroute; probes may also be more 
complex and may be handled by any protocol 
layer. The use of probes to determine the 
network behavior or measure the quality of 
network performance is called probing. Active 
monitoring techniques use probing for a variety 
of network management applications. The use 
of probes helps the NMS to respond more 
quickly and accurately to the large number of 
network events, as opposed to the traditional 
passive event correlation approach. The probes 
are typically transmitted to obtain end-to-end 
statistics such as latency, loss, and throughput. 
These statistics are then used to infer the health 
of network components. Network parameters 
and conditions can also be inferred from probe 
results. Active monitoring techniques have the 
potential to provide effective solutions for 
network monitoring applications due to their 
fundamental end-to-end nature and flexibility 
in responding to events. However, drawbacks 
of active monitoring techniques are the 
invasive character of probes and potentially 
large overhead. All the necessary tasks 

required to diagnose a network are addressed in 
the architecture and are described below. 
Probing Station Selection: The task of 
selecting locations in a network where probing 
stations should be placed.A minimum 
requirement of placement is the ability to probe 
the entire network from the selected probing 
stations. 
Probe Selection: The task of selecting the 
optimal set of probes after the probing stations 
have been selected. 
This process is divided into two sub-tasks: 
 Fault Detection: The process of selecting the 
probes only to detect presence of failures in a 
network. These probes are few in number and 
they might not be able to exactly localize 
faults. 
 Fault Localization: when a failure is detected, 
additional probes provide maximum 
information about the suspected  fault area of 
the network. The probing results are analyzed 
to localize the exact cause of failure. 
Topology Discovery: Exact network topology 
is required to select probing stations and 
probes. The network topology can be learned 
through commands such as ping and traceroute 
or by using any network discovery agents. 
 
VIII. Traffic engineering (TE)-based 
machine learning 
 In [17], a traffic engineering (TE)-based 
machine learning approach is proposed to 
detect and localize link failures. Without any 
topology information and active packets 
injection to localize a failed link, this machine 
learning model learn the network traffic 
behaviour from propagation delay, number of 
flows and average packet loss at every node in 
the network both in normal working and failure 
scenarios. The learning model is trained with 
machine learning algorithms such as naive 
Bayes, logistic regression, support vector 
machine, multi-layer perceptron, decision tree 
and random forest. The proposed approach is 
implemented and extensive experiments were 
carried out using the Mininet platform. The 
simulation results shows that the machine 
learning approach localizes link failures with at 
least 90% accuracy using random forest 
algorithm while requiring less time-to-
localization of a link failure compared to other 
existing works. Failures are detected if the 
observed behaviors fail to conform to the 
predicted ones. Differing from all the above 
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techniques, the machine learning approach 
enables a fast fault localization without 
requiring knowledge about network topology 
and the previously occurring failures. The TE 
technique can achieve high accuracy and can 
adaptively adjusting the learning (fitting) 
model with new traffic observations, which can 
be caused by the network dynamics or errors 
during the data sampling process. 
 
The TE approach has two practical 
implementations. The first implementation is 
one in which the end-to-end traffic 
measurements such as delay and packet loss 
are monitored by the  central server 
periodically. Frequent the traffic measurement, 
faster the response if a link failure occurs. The 
second implementation is the use of an event-
driven approach which trigger link fault 
localization.  
 When a node experience abnormal 
behaviours in network traffic, traffic 
measurements along with a request is sent to 
the central server for failure localization. Here 
the machine learning model is trained with the 
end-to-end traffic observations as the features 
of the input data at the central server. 
For high accuracy of the machine learning 
algorithms, suitable features of network traffic 
measurements are required for localizing link 
failures in the network. At every node in the 
network, Number of flows that destine to other 
nodes, Average end-to-end delay and Average 
packet loss are measured as features. These 
features are fed to machine learning algorithms 
as a vector A,all the three traffic measurements 
are extracted for each aggregate flow. 
 The learning model, is trained with 
different machine learning techniques such as 
naive Bayes, logistic regression, support vector 
machine, multi-layer perceptron, decision tree 
and random forest which  allows to compare 
the efficiency of different techniques. 
 Despite all the methods cited above, 
obtaining 100% accurate dependency 
information in an automatic fashion is still an 
open research problem. The complexity in 
obtaining dependency information is 
identifying  the fact related to that is a problem 
that has to be solved separately for every 
system, layer, or type of device using most of 
the mentioned techniques. 
 
 

IX. Conclusions 
 Fault localization, is the major field of 
concern in fault management, which exactly 
identifies the source and node involved in the 
failure from a set of observed failure 
indications. Accurate localization of failure is 
necessary in modern communication systems 
for fast and reliable recovery. Fault localization 
is subject to complications resulting from 
complexity, unreliability, and non-determinism 
of communication systems. A comprehensive 
survey of fault localization techniques in 
communication systems is presented in this 
paper which are derived from different areas of 
computer science, including artificial 
intelligence, graph theory, neural networks, 
information theory, and automata theory, and 
include model-based reasoning tools, model 
traversing techniques, case-based reasoning 
tools, graph-theoretic approach. The most 
challenging issues concern multi-layer fault 
localization, distributed diagnosis, temporal 
correlation, fault localization in mobile ad hoc 
networks, and root cause analysis in a service-
oriented environment. 
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