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ABSTRACT- Fiber Reinforced Plastic 
(FRP), a high-level polymeric grid composite 
material, is generally utilized in a mixture of 
application which includes airplane, robots 
and machine instruments. Machining of 
Glass Fiber Reinforced Plastic (GFRP) 
composite is a significant movement in the 
coordination of these high-level materials 
into designing application. Machining harm 
because of uneven cutting boundary might 
bring about dismissal of the composite parts 
at the last phase of their production cycle. 
Surface roughness a sign of surface quality is 
one of the major client necessities for 
machined parts. This review applied 
modeling and simulation techniques to 
determining the solution of the optimum 
cutting conditions to obtain the good surface 
roughness when end milling GFRP. 
Considering a set of trial machining 
information, the numerical model is created 
utilizing Response Surface Methodology 
(RSM). The best model was considered to 
formulate the fitness function of the 
simulated annealing (SA). Subsequently, it 
was found that by using simulated annealing, 
the minimum surface roughness can be 
obtained. 
Keywords – Glass Fibre Reinforced Plastic 
(GFRP), Surface Roughness, End Milling, 
Response Surface Methodology (RSM), 
Simulated Annealing (SA). 
 
1. INTRODUCTION 
  Glass fibre reinforced plastic 
(GFRP) composites are most widely used in 
aerospace, automobile and marine industries 
owing to their potential properties such as a 
high strength to weight ratio, and a high specific 
stiffness. The machining of GFRP has 

necessitated manufacturing near net-shaped 
components. The machining of a composite is 
different from the conventional machining of 
metals due to the composites anisotropic and 
non homogeneous nature. Among several 
industrial machining  
processes, milling is a fundamental machining 
operation. End milling is the most common 
metal removal operation encountered. It is 
widely used in a variety of manufacturing 
industries including the aerospace and 
automotive sectors, where quality is an 
important factor in the production of slots and 
dies. The quality of the surface plays a very 
important role in the performance of milling as 
a good-quality milled surface significantly 
improves fatigue strength, corrosion resistance, 
and creep life. Surface roughness also affects 
several functional attributes of parts, such as 
wearing, heat transmission, and ability of 
holding a lubricant, coating, or resisting fatigue. 
Therefore, the desired surface finish is usually 
specified and the appropriate processes are 
selected to reach the required quality. Several 
factors influence the final surface roughness in 
end milling operation. [1, 2] 

Surface roughness is 
characteristic that could influence the 
dimensional precision, the performance of the 
mechanical pieces and production cost. For 
these reasons there has been a lot of research 
and development with the objectives of 
optimizing cutting conditions to obtain a 
determined surface roughness. [3, 4] 
Because of the inhomogeneous nature of 
composite materials, their response to 
machining may involve undesirable 
consequences such as rapid tool wear, fibre 
pullout, surface burning and smearing, pitting 
and delamination. All of these responses are 
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directly related to the cutting tool force applied 
to the work piece edge.  Delamination in 
particular is strongly dependent on the cutting 
parameter component normal to the stacking 
plane in unidirectional and multidirectional 
laminate composite. The delamination of fibres 
from matrix  
due to excessive cutting parameter is a major 
problem in machining, which results in the 
lowering of bearing strength and is detrimental 
to the durability by reducing the in-service life 
under fatigue loads. [5, 6] 

Several optimization techniques, 
which can be classified as conventional and 
non-conventional (soft computing), could be 
effectively applied to optimize the cutting 
conditions that affect the Ra value. The 
conventional optimization techniques include 
Taguchi method, factorial technique, and 
response surface methodology (RSM). Among 
the conventional optimization techniques, RSM 
was mostly applied by researchers. [7] 

The selection of efficient 
machining parameters is of great concern in 
manufacturing industries, where economy of 
machining operations plays a key role in the 
competitive market. Many researchers have 
dealt with the optimization of machining 
parameters. The RSM is a dynamic and 
foremost important tool of Design of 
Experiment (DOE) where in the relationship 
between process output(s) and its input decision 
variables, it is mapped to achieve the objective 
of maximization or minimization of the output 
properties. RSM was successfully applied for 
prediction and optimization of cutting 
parameters. [8, 9] 

Some of the established soft 
computing techniques applied by previous 
researchers in machining applications are 
genetic algorithm (GA), tabu search (TS), ant 
colony optimization (ACO), and particle swarm 
optimization (PSO) One of the alternatives in 
using soft computing is the application of SA in 
estimating the optimal cutting parameters, 
particularly for the Ra value in end milling 
process. [10] 

SA was used to optimize the 
cutting parameters for multi-pass milling 
process (Wang et al., 2005). Juan et al. (2003) 
based on polynomial network to determine the 
optimal cutting parameters for minimum 
production cost in high speed machining (HSM) 

SKD61 tool steels. SA was also considered in 
optimization of machining conditions for 
minimum production of spur gears (Sankar and 
Ponnambalan, 2008) and for wire electrical 
discharge machining (Tarng et al., 1995).  
Despite the numerous capabilities of SA, its 
application in optimization of cutting conditions 
for various machining performances was given 
less attention by researchers. In this paper, 
simulated annealing is employed as it normally 
exhibits fast convergence and straightforward 
implementation. 
 
2. EXPERIMENTAL DETAILS AND 
MEASUREMENTS 
2.1  Materials and experimental setup 
Eight layered UD-GFRP specimens of 6.5mm 
thickness were prepared using the hand lay-up 
process. The reinforcement was in the form of 
uni-directional E-glass fiber tape and matrix 
was epoxy, Araldite LY556 with hardener HY 
951 (Aliphatic primary amine). A gel coat was 
applied on the mould prior to the lay-up process 
to facilitate easy removal of the laminate. 
Specimens were cured at room temperature 
having a fiber orientation of 0/90°.  
The Tools that were chosen for milling were 
K10 end mills of Solid Carbide, Titanium 
Nitride (TiNamite) and Aluminium Titanium 
Nitride (TiNamite A) having four flute each 
with Square Ends. The last two being coated 
tools. The factors were set depending upon their 
micro-hardness levels. The tools used for the 
study is SGS Carbide make. The milling 
operation was conducted using a Universal 
Milling machine with a spindle speed of 45-
1400m/min, longitudinal feed of 18 mm/min 
and cross feed range of 16-800 mm/min. The 
machine has a Vertical feed of 6.3-315 m/min 
and a clamping area of 300 X 1000 mm. The 
fixation of the composite material was made in 
such a way so as to eliminate the vibration and 
displacement. The specifications of the machine 
are shown in table 1. 
2.2  Design of experiment 

The Cutting speed v (m/min), feed f 
(mm/min), depth of cut d (mm) and tool 
material T are the four parameters under 
investigation in the present study. A full 
factorial experimental design with a total of 27 
experiment runs was carried out. The factors 
and respective levels are shown in Table 1. The 
surface roughness were the response variable 
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recorded for each run. The treatment of 
experimental result is based on the analysis of 
variance (ANOVA). The analysis of variance of 
the experimental data for the surface roughness 
generated during end milling of GFRP is done 
to study the relative significance of the cutting 
speed, feed, depth of cut and tool material. 
Table 1 Factor and Respective Levels  

FACTOR
S 

NOTAT
ION 

USED 

LEVELS 

-1 0 1 

CUTTING 
SPEED 
(m/min) 

A 100 700 1300 

FEED(mm
/min) B 50 350 650 

DEPTH 
OF CUT 

(mm) 
C 1 2 3 

TOOL 
MATERIA
L (Micro 
Hardness 

value) 

D 
SOLID 
CARB

IDE 

TITANI
UM 

NITRID
E 

COATE
D 

ALUMIN
IUM 

TITANIU
M 

NITRIDE 
COATED 

 
2.3  Measurements of surface roughness 

Surface Roughness is measure of 
texture of a surface. It is quantified by the 
vertical deviations of a real surface from its 
ideal from. If theses deviations are large, the 
surface is rough; if they are small the surface is 
smooth. Roughness is typically considered to be 
the high frequency, short wavelength 
component of a measured surface. The surface 
roughness (Ra) was evaluated using Surfcoder 
SE 1700.The measurements were made with the 
cut-off (0.8mm) according to ISO. The results 
are being tabulated as shown in table 2. 
Table 2 Experimental Results 

Ru
n 

Or
de
r 

Spee
d 

(m/
min) 

Fee
d 

(mm
/min

) 

Dep
th of 
cut 

(mm
) 

Tool 
mater

ial 
 

Surfac
e 

rough
ness 

(Micr
on) 

1 0 -1 0 -1 1.4465 
2 0 0 0 0 1.5845 
3 -1 0 0 -1 2.0311 
4 1 0 1 0 1.8571 
5 1 0 0 1 1.8571 
6 0 1 0 1 1.4225 
7 0 -1 0 1 1.0195 
8 -1 0 0 1 1.3911 

9 -1 0 1 0 1.2345 
10 0 0 0 0 1.7225 
11 0 0 -1 -1 1.1991 
12 0 -1 1 0 1.2755 
13 1 0 -1 0 0.9221 
14 1 0 0 -1 1.2588 
15 -1 0 -1 0 1.5524 
16 0 1 0 -1 1.9951 
17 0 1 1 0 1.2337 
18 -1 -1 0 0 1.5235 
19 0 0 0 0 1.5121 
20 0 0 -1 1 1.2081 
21 0 -1 -1 0 0.9813 
22 0 0 1 -1 1.8711 
23 0 0 1 1 1.1895 
24 1 -1 0 0 1.3831 
25 1 1 0 0 1.6895 
26 -1 1 0 0 1.8451 
27 0 1 -1 0 1.8261 
 
2.4 Simulated Annealing Method 

Simulated annealing algorithm is 
a nature-inspired method which is adapted from 
the process of gradual cooling of metals in 
nature. In the metallurgical annealing process, a 
solid is melted at high temperature until all 
molecules can move about freely, and then a 
cooling process is performed until thermal 
mobility is lost. The perfect crystal is the one in 
which all atoms are arranged in a low level 
lattice, so the crystal reaches the minimum 
energy. At the temperature of T, the solid is 
allowed to reach a certain thermal equilibrium 
status. The probability of being at the energy 
level of E is determined by the Boltzmann 
distribution: 
Pr (E) =                 (1) 

Where Z (T) is a normalization factor and is 
dependent to the temperature T. The parameter 
KB is the Boltzmann constant and the 
exponential term is the Boltzmann coefficient. 

 
Figure 2 Distribution of probability for three 
different temperatures 
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 With the decrease of temperature, the 
Boltzmann distribution focuses on a state with 
lowest energy and finally as the temperature 
comes close to zero, this becomes the only 
possible state as showing Fig. 2. 
3. RESULT AND DISCUSSION  
3.1 RSM Modeling  
 A regression model was developed to 
estimate the surface roughness values. The 
models were based on the Box-Behnkn design 
method. The developed second order 
Mathematical Model was developed for surface 
roughness with a confidence level of 95% as 
shown in Eq.2 
Surface roughness (Ra) = 0.914038 - 
0.00254186(A) + 0.00288564(B) + 1.25682(C) 
- 1.58E-04 (D) + 1.33E-07(A) (A) - 7.25E-
07(B)(B) - 3.24E-09 (D) (D)- 2.08E-08(A)(B) - 
9.91E-08(B)(D)    (2) 
Subsequently, Eq. (2) will be proposed as the 
objective function for optimization solution of 
the SA. 
3.2 SA Optimization Process 
   SA is a method for solving 
unconstrained and bound-constrained 
optimization problems. It models the physical 
process of heating a material and then slowly 
lowering the temperature to decrease defects, 
thus minimizing the system energy. At each 
iteration of the SA algorithm, a new point is 
randomly generated. The distance of the new 
point from the current point, or the extent of the 
search, is based on a probability distribution 
with a scale proportional to the temperature. 
The algorithm accepts all new points that lower 
the objective, but also, with a certain probability 
points that raise the objective. By accepting 
Points that raise the objective, the algorithm 
avoids being trapped in a local minimum, and is 
able to explore globally for more possible 
solutions. An annealing schedule is selected to 
systematically decrease the temperature as the 
algorithm proceeds. As the temperature 
decreases, the algorithm reduces the extent of 
its search to converge to a minimum. An 
important part of the SA process is how the 
inputs are randomized. The randomization 
process takes the previous input values and the 
current temperature as inputs. The input values 
are then randomized according to the 
temperature. A higher temperature will result in 
more randomization; a lower temperature will 
result in less randomization. There is no specific 

method defined by the SA algorithm for how to 
randomize the inputs. The exact nature by 
which this is done often depends upon the 
nature of the problem being solved. Fig. 3 
illustrates the flow on how the SA technique 
operates in order to search the optimal solution. 
The target of the optimization process in this 
study is to determine the optimal values of the 
process parameters that lead to the minimum 
value of Ra. To formulate the optimization 
problem, the regression model which is 
proposed in Eq. (2) is taken to be the fitness 
function of the optimization solution. 
The minimization of the fitness function value 
is subjected to the boundaries of the process 
parameters. The range of values of experimental 
process parameters in Table 2 is selected to 
present the limitations of the optimization 
solution and is given as follows: 
100 ≤ X1 ≤ 130   
 (3a) 
50 ≤ X2 ≤ 650    (3b) 
1 ≤ X3 ≤ 3    (3c) 
1500 ≤ X4 ≤ 3300   (3d)  
The process parameters that lead to the 
minimum Ra of the regression model as given 
in Table 4 will be chosen to be the initial points 
for the SA solution and are given as follows: 
INITIAL POINT OF X1 = 700 
 (4a)  
INITIAL POINT OF X2 = 350 
 (4b)  
INITIAL POINT OF X3 = 2  (4c) 
  
INITIAL POINT OF X4 = 2400 
 (4d)  
Basically, to obtain the optimal solutions, some 
criteria must be considered by the SA algorithm 
as listed in Table 3. 
Table 3 Combination of SA parameter rates 
leading to the optimal solution. 

Parameters Setting 
value/function type 

Annealing function Boltzmann 
Annealing 

Re-annealing 
interval 100°C 

Temperature 
update function Exponential Temp 

Initial temperature 100°C 
Acceptance 
probability 
function 

Simulated Annealing 
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By using the fitness function formulated in Eq. 
(2), the limitations of process parameters 
formulated in Eqs. (3a)- (3e), the initial points 
formulated in Eqs. (4a)–(4e), and the SA 
parameters given in Table 3, the Matlab 
Optimization Toolbox is next applied to find the 
minimum values of Ra at the optimal points. 
The results of the Matlab Optimization Toolbox 
are given in Figs. 4 and 5. The optimal solution 
is obtained at the 10434-th iteration of the SA 
algorithm. 

 
Figure. 4 The results of the Matlab 

Optimization Toolbox 

 
Figure 5 The results of the Matlab 

Optimization Toolbox  
 
CONCLUSION 
This study reports on the application of the SA 
technique in order to estimate the optimal 
solutions of cutting conditions that lead to a 
minimum Ra value. The regression model 
equation has been selected to be the fitness 
function equation for the SA optimization. The 
results of the SA optimization can be 
summarized in Table 4. It was found that SA is 
an effective technique for estimating the 
minimum Ra values as compared to the 
experimental. It has also been discovered that 
the optimal value for each of the cutting 
conditions recommended by the SA which lead 
to the minimum Ra values satisfies the range of 
minimum and maximum coded value of the 
experimental design. The target of the 

optimization process is also to determine the 
optimal values of decision variables that could 
lead to the minimum Ra value. Therefore, with 
770 mm/min for cutting speed, 147 mm/min for 
feed, 1.00 mm depth of cut and Titanium 
Nitride Coated for tool material the best Ra 
value obtained was 0.20. As such SA is suitable 
to be used as one of the optimization tool in 
evaluating machining performance. 
Table 4 Comparison between the optimal 
cutting condition results of Experiment and 
SA 

Techni
que 

Cuttin
g 

speed 
mm/m

in 

Feed 
mm/
min 

Dept
h of 
cut 
mm 

Tool 
material 

Surface 
roughne
ss (Ra) 

Experi
mental 1300 350 1 

Titaniu
m 

Nitride 
Coated 

0.9221 

SA 770 147 1 

Titaniu
m 

Nitride 
Coated 

0.2062 
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