

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-8, ISSUE-3, 2021

7

DESIGN OF HANDWRITING RECOGNITION SYSTEM FOR

KANNADA CHARACTERS USING TENSORFLOW
1Asha K, 2Kiran Kumar Gowda R, 3Diksha M M, 4Soniya B S

1Assistant Professor Dept. of IS&E, GMIT, Davanagere, INDIA
ashak@gmit.ac.in

2Student [4GM18IS025] Dept. of IS&E, GMIT, Davanagere, INDIA
kirangowdareigns1@gmail.com

3Student [4GM18IS014], Dept. of IS&E, GMIT, Davanagere, INDIA
dikshamm2000@gmail.com

4Student [4GM18IS052]
Dept. of IS&E, GMIT, Davanagere, INDIA

soniyabs98642@gmail.com

Abstract— Most of the literatures and other
historical data are in the form of handwritten
documents. Such documents need to be
digitized and preserved for future generation
to transfer the knowledge about our culture
and history. Development of Handwriting
recognition system plays a vital role in
digitizing the handwritten document. This
paper provides technical details for the design
of Handwriting recognition system for
Kannada. The steps required for the
development of handwriting recognition
engine are discussed using Tensorflow - An
open source machine learning framework.
Keywords— Tensorflow, handwriting
recognition, Offline handwriting recognition,
Kannada ocr, Pattern recognition, deep
learning.

I. INTRODUCTION
Handwritten character recognition has received
greater attention in academic and research fields.
In this regard much research has been done for
international languages like English, but least
work is done for South Indian languages because
of hardware limitation to accept large character
set of Indian scripts. Hence, handwriting
recognition system for South Indian languages is
in demand. Majority of the people in South
India speak one of the four major Dravidian

languages: Telugu, Tamil, Kannada and
Malayalam.
Kannada is the official language of the southern
Indian state of Karnataka. Kannada is a
Dravidian language spoken by about 44 million
people in the Indian states of Karnataka, Andhra
Pradesh, Tamil Nadu and Maharashtra. The
Kannada alphabets were developed from the
Kadamba and Chalukya scripts, descendents of
Brahmi which were used between the 5th and 7th
centuries AD. The Kannada character set
considered for recognition in this paper has 16
vowels and 35 consonants as shown in Figure 1.

Figure 1 Basic Kannada Character Set

II. HANDWRITING RECOGNITION
SYSTEM
Generalized steps involved in handwriting
recognition

mailto:dikshamm2000@gmail.com

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-8, ISSUE-3, 2021

8

system are data collection, pre-processing,
feature extraction and classification as shown in
Figure 1.
Step 1: Data acquisition
This is the first step in handwriting recognition
system. In this step data is in the form of image
consisting of handwritten information.
Step 2: Pre processing
The accuracy of any handwriting recognition
system can be improved by applying proper
pre-processing techniques. There are many
pre-processing techniques like Binarization,
noise elimination, slant correction, size
normalization, smoothing or thinning,
re-sampling etc. These pre-processing
techniques are system dependent and basically
pre-processing techniques are used to present the
clear input to the recognition system by
removing noise or distortion present in the input.
Binarization
This step is necessary because the captured
/scanned image may be having data/information
in different colours. The idea behind binarization
is to separate the foreground and background
information by setting the background to white.
Noise removal
The accuracy of handwriting recognition system
much depends on the clarity of the input image.
Most of the time additional noise may be present
in the input image either because of the quality
of capturing device or aging of image or external
dust. This additional noise is called impulse
noise or salt and pepper noise, by applying
filtering techniques like median filter or
morphological filter or Dvadasham (Dodeca)
Edge Filter (DEF) [1]. Basically in median
filtering, the value of each pixel is replaced by
the median of pixel values in the specified
dimension of neighbourhood.
Slant correction
Slant correction is a process of detecting and
correcting the skew by estimating the angle at
which an input image is rotated during the data
acquisition. Some of the techniques for slant
correction are Projection profile method, run
length based technique, Hough transform,
extrema method, generalized chain code
estimator etc [2].
Size normalization
This technique is applied to bring uneven sized
character present in the input to a predefined size
to make it even with respect to all the characters
present in the input. Size normalization can be

done by comparing the input stroke border frame
with assumed fixed size frame.
Smoothing or thinning
Thinning is applied to have characters with
single pixel thickness by removing the flickers
which may exist in handwritten data because of
handwritten style and the hardware used.
Thinning can be done by modifying each pixel
value with mean value of k-neighbours and the
angle subtended at position from each end.
Step 3: Feature extraction
After normalizing the data, by applying
pre-processing techniques, the most challenging
part in recognition phase is segmentation.
Segmentation is not required for isolated
handwritten character recognition but it is very
important in case of document or word
recognition. Handwritten document recognition
system involves line segmentation which
separates each line of text followed by word
segmentation which separates each word in a
line [3] as shown in Figure 2, Figure 3 and
Figure 4.

 Figure 2.Before Segmentation

Figure 3.Line Segmentation

Figure 4.Word Segmentation

It is very important to identify and extract

unique and correct features from character set of
a particular language to maximize the
recognition rate with the least amount of
elements. Features used to represent a character
are language dependent hence the method that
gives better result for a particular script cannot
be applied for other scripts. The character set of
South Indian languages contains wide variety of
structural features like loops, crossings,
headline, straight line, dots etc. and statistical
features like zoning, projection and profiles.

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-8, ISSUE-3, 2021

9

Step 4: Classification
Classification is the last and the most

important step which carry out some form of
comparison between a given unknown
handwriting pattern to reference handwriting
patterns to assign one of the references to the
unknown one.

III. RELATED WORK
Arwa Mohammed Taqi et al., [4] presented a

paper “The Impact of Multi-optimizers and Data
Augmentation on TensorFlow Convolutional
Neural Network Performance”. Four different
optimizers were used with the TF-CNN,
Adagrad, ProximalAdagrad, Adam, and
RMSProp to achieve accurate classification. The
classification accuracy using Adam optimizer
was 95.8%, and it reaches 100% when using
RMSProp optimizer.

Reena Dhakad and Dinesh Soni [6]
proposed Devanagari Digit Recognition by
using Artificial Neural Network. The Support
Vector Machine (SVM) and k-NN categoryifiers
were used with one-against-rest class model.
Neural network classifier has obtained highest
result accuracy of 93.21%.

Anirudh Ganesh et al., [6] proposed Deep
Learning Approach for Recognition of
Handwritten Kannada Numerals. Authors
implemented the LeNet model for Convolutional
Neural Networks and models for the Deep Belief
Network and explored the performance of
Convolutional Neural Networks, and Deep
Belief Networks in the classification of
Handwritten Kannada numerals as obtained
from the Chars74 k dataset. They have obtained
an accuracy of around 97.76 percent using CNNs
and a similar accuracy of 98.14 percent in case of
DBNs and conclude that the convolutional
neural networks converge faster than deep belief
networks.

Keerthi Prasad et al., [7] proposed online
Kannada handwritten character recognition for
mobile devices. The proposed system was
implemented on mobile devices for Kannada
vowels and consonants using Principal
component analysis (PCA) and dynamic time
wrapping (DTW) techniques and they obtained
an accuracy of 88% for PCA and 64% for DTW
approach.

S.A Angadi and Sharanabasavaraj
H.Angadi [8] proposed a method that uses
structural features and Support Vector Machine

(SVM) classifier for recognition of handwritten
Kannada characters. They obtained recognition
accuracy of 89.84% and 85.14% for handwritten
Kannada vowels and consonants.

Anitha Mary M.O et al., [9] proposed a
method which uses the combination of Chain
Code Histogram and Differential Chain Code
Histogram based features for recognition of
isolated basic Malayalam characters. They
obtained an accuracy of 92.75% using neural
network classifier. Authors [10] have also
proposed a novel method for the isolated
Malayalam character recognition based on the
combination of global and local features. Global
features include moment invariants and
projection features and gradient features of the
characters are considered as local features.
Proposed method achieves an accuracy of
96.16% recognition using a two layer feed
forward neural network as a classifier.

IV. TENSOR FLOW
TensorFlow is a powerful data flow oriented

machine learning library created the Brain Team
of Google and made open source in 2015. It is
designed to be easy to use and widely applicable
on both numeric and neural network oriented
problems as well as other domains. It can be
thought of as a programming system in which
you represent computations as graphs. Nodes in
the graph represent math operations, and the
edges represent multidimensional data arrays
(tensors) communicated between them.

 Figure 4.Tensor

Tensors are higher dimensional arrays, as

represented in Figure 5, which are used in
computer programming to represent a multitude
of data in the form of numbers. There are other
n-d array libraries available on the internet like
Numpy but tensorflow stands apart from them as
it offers methods to create tensor functions and
automatically compute derivatives.

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-8, ISSUE-3, 2021

10

Generalized TensorFlow model to create
handwriting recognition engine is shown in
Figure 5.

Figure 5.Tensorflow Model

Training Neural Network: Collect and load

the dataset for training with any of the Deep
learning architectures such as convolutional
neural networks, deep belief networks and
recurrent neural networks. There are many
dataset available online for research purpose
such as MNIST, Chars74K and many more.

For example, training the CNN with MNIST
dataset is shown below. We know that CNN
consists of different layers namely input layer,
convolutional layer, pooling layer, dense layer
and output layer. Configuration of these layers
using tensorflow is as below.

Imports
import numpy as np import tensorflow as tf

Input Layer
input_layer = tf.reshape(features["x"], [-1, 28,

28, 1])
The parameters are [batch_size, image_height,

image_width, channels]. MNIST dataset is
composed of monochrome 28x28 pixel images,
so the desired shape for our input layer is
[batch_size, 28, 28, 1].

Convolutional Layer #1 conv1 =

tf.layers.conv2d(inputs=input_layer,
filters=32, kernel_size=[5, 5],

padding="same", activation=tf.nn.relu)
In our first convolutional layer, we want to

apply 32 5x5 filters to the input layer, with a
ReLU activation function.

Pooling Layer #1
pool1 =

 tf.layers.max_pooling2d(inputs=conv1,
pool_size=[2, 2], strides=2)

Construct a layer that performs max pooling
with a 2x2 filter and stride of 2.

Convolutional Layer #2 and Pooling Layer

#2
conv2 = tf.layers.conv2d(inputs=pool1,

filters=64, kernel_size=[5, 5],

padding="same", activation=tf.nn.relu)

pool2=tf.layers.max_pooling2d(inputs=conv2

, pool_size=[2, 2], strides=2)
Convolutional layer #2 has a shape of

[batch_size, 14, 14, 64], the same height and
width as pool , and 64 channels for the 64 filters
applied.

Dense Layer
 pool2_flat = tf.reshape(pool2, [-1, 7 * 7 *

64])
dense = tf.layers.dense(inputs=pool2_flat,

units=1024, activation=tf.nn.relu)
 dropout = tf.layers.dropout (inputs=dense,

rate=0.4, training=mode
 == tf.estimator.ModeKeys.TRAIN)
Next, we want to add a dense layer (with 1,024

neurons and ReLU activation) to our CNN to
perform classification on the features extracted
by the convolution/pooling layers.

Logits Layer
 logits = tf.layers.dense(inputs=dropout,

units=10)
The final layer in our neural network is the

logits layer, which will return the raw values for
our predictions. Our final output tensor of the
CNN, logits, has shape [batch_size, 10].

Generate Predictions & Probabilities
 The predicted class for each example: a

digit from 0–9.
The probabilities for each possible target class

for each example: the probability that the
example is a 0, is a 1, is a 2, etc.

Tensorflow has two functions for prediction &
probabilities. tf.argmax(input=logits, axis=1)

tf.nn.softmax(logits, name="softmax_tensor")

Calculate Loss
We need to define a loss function that

measures how closely the model's predictions
match the target classes.

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-8, ISSUE-3, 2021

11

Calculate Loss (for both TRAIN and EVAL
modes) loss=

tf.losses.sparse_softmax_cross_entropy(labels
=labels, logits=logits)

Configure the Training Op
Let's configure our model to optimize the loss

value of previous section during training. We'll
use a learning rate of and stochastic gradient
descent as the optimization

 algorithm.
if mode == tf.estimator.ModeKeys.TRAIN:

optimizer=
tf.train.GradientDescentOptimizer(learning_r

ate=0.001) train_op = optimizer.minimize(
loss=loss,

global_step=tf.train.get_global_step())
return

tf.estimator.EstimatorSpec(mode=mode,
loss=loss, train_op=train_op)

Training the CNN MNIST Classifier
Load training and eval data
mnist =

tf.contrib.learn.datasets.load_dataset("mnist")
train_data = mnist.train.images # Returns
np.array train_labels =
 np.asarray(mnist.train.labels,

 dtype=np.int32)

eval_data = mnist.test.images # Returns

np.array eval_labels =
np.asarray(mnist.test.labels, dtype=np.int32)

Now we're ready to train our model, which we

can do by creating train_input_fn and calling
train() on mnist_classifier.

Train the model
train_input_fn =

tf.estimator.inputs.numpy_input_fn(x={"x":
train_data},

y=train_labels, batch_size=100,
num_epochs=None, shuffle=True)

mnist_classifier.train(
input_fn=train_input_fn, steps=20000,
hooks=[logging_hook])

After training the selected model save it to a

separate file and load the same on to new python
script for evaluation with test input.

V. CONCLUSION
Handwriting recognition system for

international languages like English is
commercially available and much work need to
be carried out for South Indian languages like
Kannada, Tamil, Telugu and Malayalam. This
paper has explored the design for the
implementation of handwriting recognition
system using tensorflow which is very useful for
the research in the field of handwriting
recognition of Indian scripts.

REFERENCES
[1] Naveen R Chanukotimath, Feroz Khan,

Keerthi Prasad G, Imran Khan, Deepak D J,
Nasreen Taj M B, “Dvadasham (Dodeca) Edge
Filter for Impulse Noise, Gaussian Noise,
Quantum Noise Reduction in Images”,
Compusoft, An International Journal of
advanced computer technology, July 2013,
Volume-II.

[2] Nazia Makkar and Sukhjit Singh, “A Brief
tour to various skew detection and correction
techniques”, IJSETT, 2012, pp 54-58.

[3] A. Sushma and Veena G.S “Kannada
handwritten word conversion to electronic
textual format using HMM model” International
conference on CSISS 2016, pp 330-335.

[4] Arwa Mohammed Taqi, Ahmed Awad,
Fadwa Al-Azzo and Mariofanna Milanova, “The
Impact of Multi-optimizers and Data
Augmentation on TensorFlow Convolutional
Neural Network Performance”, In Proc. IEEE
Conference on Multimedia Information
Processing and Retrieval, 2018.

[5] Reena Dhakad and Dinesh Soni.
“Devanagari Digit Recognition by using
Artificial Neural Network”, In Proc.
ICECDS-2017.

[6] Anirudh Ganesh, Ashwin R. Jadhav, K.A.
Cibi Pragadeesh, “Deep Learning Approach for
Recognition of Handwritten Kannada
Numerals”, Springer International Publishing
AG 2018, Proceedings of the Eighth
International Conference on Soft Computing and
Pattern Recognition.

[7] Keerthi Prasad, Imran Khan, Naveen R
Chanukotimath and Firoz Khan. “On-line
Handwritten Character Recognition System for
Kannada using Principal Component Analysis
approach”, In Proc. WICT-12, Trivendram,
India.

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-8, ISSUE-3, 2021

12

[8] S.A Angadi and Sharanabasavaraj
H.Angadi. “Structural Features for Recognition
of Hand Written Kannada Character based on
SVM”. International Journal of Computer
Science, Engineering and Information
Technology, Vol. 5, No. 2, April 2015.

[9] Anitha Mary M.O. Chacko, Dhanya P.M,
“Combining Classifiers for Offline Malayalam
Character Recognition”, Emerging ICT for
bridging the future, Vol. 2, Springer
International Publishing, Switzerland 2015.

[10] Anitha Mary M.O. Chacko, Dhanya P.M.
“A differential chain code histogram based
approach for offline Malayalam character
recognition”, International conference on
communication and computing, pp. 134-139,
2014.

	ashak@gmit.ac.in
	2Student [4GM18IS025] Dept. of IS&E, GMIT, Davanagere, INDIA

